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Abstract— Deep learning enabled medical image analysis
is heavily reliant on expert annotations which is costly. We
present a simple yet effective automated annotation pipeline
that uses autoencoder based heatmaps to exploit high level
information that can be extracted from a histology viewer in
an unobtrusive fashion. By predicting heatmaps on unseen
images the model effectively acts like a robot annotator. The
method is demonstrated in the context of coeliac disease
histology images in this initial work, but the approach is task
agnostic and may be used for other medical image annotation
applications.The results are evaluated by a pathologist and
also empirically using a deep network for coeliac disease
classification. Initial results using this simple but effective
approach are encouraging and merit further investigation,
specially considering the possibility of scaling this up to a
large number of users.

Index Terms— automated annotation, explainable deeplearn-
ing, autoencoder, heatmap visualisation, coeliac disease

I. INTRODUCTION

Deep learning based medical image analysis has
reached near human accuracy in a range of segmenta-
tion/classification tasks [1], [2]. But supervised deep learning
requires large amount of labeled data for robust and gener-
alised performance, which in turn needs significant amount
of annotations by human experts [3]. This is particularly
costly for medical imaging applications, as it is difficult to
have access to the time of clinical experts. The need of the
hour is a machine learning tool that can be trained from a
limited number of expert annotations available and then learn
to bootstrap that for automated annotation of incoming new
images.

The present work does exactly that. Only information that
can be obtained from image viewers in an unintrusive fashion
is being utilised. We present a simple yet effective pipeline
using kernel density estimation of autoencoder generated
heatmaps. The heatmaps produced are used to annotate
further images and then subsequently used for classification
of coeliacs disease as an exemplar test case. This was chosen
because it involves the assessment of separate and clearly
defined regions and as a result attention should be clearly
targeted to those regions as well [4]. This means that an
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attention heatmap would be more informative than in the case
where the pathologist is required to look more broadly across
the image. Coeliac disease is a condition whereby the inges-
tion of gluten triggers an immune response which attacks the
small intestine. It has a prevalence of approximately 1% of
the populations of the US and Europe and symptoms include
diarrhea and abdominal pain [5]. In addition to clinical and
serological examination, histopathological examination plays
a major role in its diagnosis. Biopsies are taken of the small
bowel and imaged. Diagnosis is based on the analysis of two
main features: the structure of the crypts and villi, and the
number of lymphocytes present [6].

Fig. 1: Schematic of the proposed automated annotator

Recently, the idea of computer assisted annotations for
medical imaging tasks [7], [8] as been explored. But the
reliability of these annotation methods [9] is still an open
problem of research and needs pathologist validation. The
main drawback of the existing works on integration with
a small set of expert annotations with a machine learning
based automated annotator is the human experts only focus
on the ROI (region of interest) of the image for decision
and disregard most of the other regions, as a result of which
heatmaps with sharp edges are created which are less specific
[10], [11]. Thus a focus of attention of model with uneven
probability distribution for attention is needed resulting in
a smooth heatmap for ROIs, and the present work provides
exactly that.

The results presented in this report support the claim
that the proposed technology can be used in two different
settings:

• Monitoring pathologists. As this methodology only
requires user input that can be extracted remotely it
will be possible to run this at a large scale involving
several experts without imposing any restrictions on
their regular workflow. This makes the generation of
large data sets possible at low cost.

• Enhancing machine learning algorithms. The ability
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to make accurate predictions for heatmaps using a small
number of training samples could be used to produce
large numbers of weakly annotated data points. The
validation results also give a strong indication that the
predicted heatmaps are accurate enough to be useful as a
prior for the focus of attention of an image classification
algorithm.

II. METHODOLOGY AND EXPERIMENTAL SETUP

Here we present the data preprocessing, model architecture
and training protocol. The method is summaried in Figure 1.

A. Data preparation and preprocessing

30 images of small bowel biopsies, collected by through
the authors’ affiliated hospital, were used to demonstrate the
automated annotation tool. Of these, 24 were used to train
the algorithm to generate heatmaps, which were then used to
test the remaining six. 5-fold cross validation was performed
whereby training was performed and expert annotations were
obtained by a pathologist for groundtruth. The main discrimi-
nating regions were the villi, stroma, crypts and lymphocytes,
in that order. The images were segmented into 128×128 pixel
tiles. This size was chosen as it was found to be at a similar
scale to the width of a villus extrusion. This meant that villi
could be identified as a feature and be separated from the
rest of the image as a region of interest. This also meant
that the effective number of patch level training samples
generated by the process was large enough to train the model.
The tiling procedure generated a total of 40,000 patches,
which were clustered into 8 categories. Though the number
of samples belonging to the background cluster consituted
around 50% of the samples. The other categories (villi, crypt,
stroma, etc.) were more evenly distributed, with at least
1000 patches per cluster, which turned out to be enough
for effective training of the autoencoder model. The 40,000
image segments were divided into eight clusters using the
k-means algorithm. The five largest clusters could broadly
be defined as follows: background - 21,344 segments, villi
extrusions - 4,615 segments, clear circular villi cross sections
- 2,830 segments, amorphous villi cross sections - 5,110
segments, stroma - 2,782 segments. The content of the
segments in the remaining three clusters (of sizes 1,175,
1,073 and 1,071 segments) was less clearly defined upon
visual inspection. These were most commonly found around
the edges of sections of tissue and may have contained some
combination of the features from the larger clusters.

B. Autoencoder architecture and training

A feature vector was generated for each patch using
a convolutional autoencoder. The autoencoder architecture
consisted of alternating layers of convolution (with 5 × 5
filters and ReLu activation) and max pooling layers (down-
sample by factor of 2). Five stages of this using varying
numbers of filters at each stage resulted in a 4 by 4 by
1 encoded version of each segment. This final size was
chosen as a balance between being large enough to generate
a complex representation of each segment without being

so large that the computation would suffer due to its high
dimensionality. Five layers of transposed convolution with
a stride of 2 were used to form the decoder. Some of the
training settings used are listed below:

• 80% of the patches were used to train the model and the
remaining 20% to validate the model on unseen patches
and check for overfitting and parameter tuning.

• He initialization [12] was used for the convolutional
layers to keep the initial variance of each of the layers
equal.

• The autoencoder was optimised by minimising the pixel
wise mean squared error between the input segment and
its decoded reconstruction. It measures pixel by pixel
how different the reconstruction is from the input image.
This, along with the l1 regularization term constituted
the loss function to be minimised.

• The Adam optimiser was used [13] with an adaptive
learning rate. Mini-batches of 128 samples of the train-
ing data were used on each iteration. Optimization was
terminated after 20 epochs (runs through the data).

III. HEATMAP GENERATION AND EVALUATION

A. Heatmap Generation

The training patches were run through the encoder stage
of the autoencoder. The euclidean distance from the encoded
version (or feature vector) of each segment to each of
the cluster centres was calculated and the segment was
assigned to the closest one. The recorded heatmaps were
integrated over the segments in each cluster to give the
cluster’s weightings. This was repeated for each image and
the results summed to find a total weighting for each cluster.
The weighting of the cluster which represented the image
backgrounds was set to zero.

Fig. 2: An example input image and the results of the
three main objectives of the project: a heatmap showing
where a pathologist looked in the image, a colour coded
map of the image indicating the physiological feature at each
location and a heatmap showing predictions for the locations
of ROIs in the image.

Attention heatmaps were generated as the pathologist
analysed the images by recording which part of the image
was in the centre of the image viewer and how long it
was held there for. Kernel density estimation was used to
convert this to a probability density function for attention
at a given location. This was to reflect the chance that the
pathologist was not looking directly at the centre of the
screen. A probability at each position was calculated by
summing the values of surrounding data points (or samples).
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Each sample was weighted according to how close it is to
the position being evaluated and by how long the viewer
was held there for. The kernel, in this case, is the function
which calculates the weighting for each sample [14]. Several
different functions are commonly used and it has been
shown that the choice of function only has a small effect
on the accuracy of the algorithm when trained to learn
known distributions [15]. As the kernel density estimate is a
convolution of the data with the kernel, Fourier transforms
can be used for more efficient computation [15]. Using a
Gaussian kernel has computational benefits therefore as its
Fourier transform can be found explicitly and so was chosen
for use in this work.

Heatmaps were displayed by converting the image to HSV
format and replacing the hue value with that of the heatmap.
This meant that the heatmaps could be viewed overlayed
with the image. Red delineated a region which received
high amounts of attention and blue a region which received
minimal amounts of attention.

B. Heatmap Prediction

The feature clusters were then used to predict attention
heatmaps for an unseen image using the following method:

1) The image is segmented and a feature vector gener-
ated for each segment using the same filtering and
dimensionality reduction process as the one described
previously.

2) The segments are assigned to one of the seven clusters
from the ’seen’ image. This is done according to the
least squared Euclidean distance between the segment’s
feature vector and the centres of the clusters.

3) The value of each cluster is assigned according to
the cluster weightings from the first image. Cluster
weightings are adjusted by raising them all to the
power of τ where τ represents the specificity of the
clusters chosen. As τ increases, the variance between
cluster weightings will increase. Thus, high τ will
result in only the most salient clusters being used and
a more specific heatmap.

4) Kernel density estimation is used to generate the
heatmap from this, taking the sample at each location
in the image as the weighting of the cluster that the
pixel in that location’s segment had been assigned to.

5) Two parameters needed to be tuned at this stage: The
specificity and the bandwidth of the kernel density
estimation. Changing the specificity would vary how
much contextual information is highlighted (i.e. tissue
surrounding the villi extrusions) by controlling the
weighting of the villi extrusions cluster relative to the
others. Choice of this would depend on how diagnosti-
cally salient the contextual information was. Changing
the bandwidth would vary how detailed the heatmap
was. A small bandwidth would generate a heatmap
which focused solely on the segments in the highest
weighted clusters whereas a larger bandwidth would
result in some overlap into the surrounding regions and
thus a more conservative prior.

C. Heatmap Evaluation

We evaluate the heatmaps generated by both human expert
and also through a classification tasks using a deep network.
An illustrative example of results is provided in figure 2.

1) Human evaluation by expert: When validating the
heatmaps, two types of error had to be tested for: false
positive (when regions were highlighted which weren’t in
fact relevant to diagnosis) and false negative (when regions
which were in fact relevant were ignored).

False negatives were measured by comparing the
heatmaps predicted with those recorded from the patholo-
gist. Success was defined by the percentage of the ROIs
identified by the pathologist also highlighted as salient in the
prediction. In the recorded heatmaps most of the image (70-
80%) received no attention at all. This is expected since the
pathologist could move straight to distinct regions of interest
and ignore the rest of the image. An ROI was therefore
defined as anywhere in the heatmap which had received
attention. Across the 25 images tested (5 from each of the
5 cross validations) the average coverage with an 8 pixel
bandwidth was 79% with a minimum coverage of 46% and
a maximum of 100%.

False positives could not be identified simply by com-
paring the two heatmaps for an image. The pathologist was
shown the full image and then cropped sections of the image
which were potential false positives. These were then ranked
1-3 according to how informative they were for forming
a diagnosis: 1 for completely irrelevant, 2 for somewhat
informative and 3 for highly informative. 24 sections were
analysed and it was found that of these: 11 (46%) were highly
informative, 7 (29%) were somewhat informative and only
6 (25%) were completely irrelevant.

(a) Tissue folding: folds in
the tissue lead to darker re-
gions in the image.

(b) Square outlines: due to
structure of cartridge hold-
ing tissue sample.

Fig. 3: Examples of artefacts of the imaging process.

2) Automated evaluation by deep network: The effective-
ness of generated heatmaps was also assessed by a standard
classification network to measure whether annotated regions
could contribute to patch-based classification performance.
As mentioned previously, clinical diagnosis is based pri-
marily on the analysis of villi extrusion structures, and our
previous results have demonstrated that villi regions can be
identified and separated from the rest of the image patches.
Therefore, we will use the generated heatmaps as a region
of interest (RoI) detector to localise the most discriminative
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patches within each whole slide image (WSI).
The WSIs were labeled by a pathologist based on modified

Marsh score [18], which was developed to measure the sever-
ity of coeliac disease. Our goal was to classify the images
into five grades: normal, Marsh II, March IIIa, March IIIb
and March IIIc. The severity scores of WSIs were assigned
to all their patches. We constructed two patch-based dataset.
In the first dataset we randomly cropped 1000 patches of
size 512 × 512 from each WSI. In the second dataset we
extracted the centre of each villi segment and generated
weakly annotated data points. As a result, a large number
of 512 × 512 patches around the annotation points were
cut. We trained our classifier with a MXNet implementation
of ResNet-18 on two datasets. We used the SGD optimizer
with a learning rate of 0.0001 and momentum of 0.9 for 200
epochs. We find that on the dataset with random cropping,
the ResNet yields a classification accuracy of 51.2%, whereas
when the dataset with heatmap based villi detection is used,
the accuracy with the same ResNet backbone improves to
76.6%. We attribute the improvements to the localisation of
villi regions, which successfully discarded irrelevant patches
and enhanced the discrimination of patch appearance.

3) Analysis of failure cases: These results show that the
majority of the salient regions of the images were identified,
however there were still some errors. This was often either
due to an artefact of the scanning process making it into the
image (see figure 3) or simply because it was an unusual
feature which was present in a large enough number of
segments to form its own cluster. Two of the three images
with the lowest coverage showed tissue folding, highlighting
the impact of the failure to identify these rare occurrences.
These problems could be fixed to some extent by using more
data. With enough images there would be enough examples
of even very rare features to form a clear representation of
them. There are distinct types of artefact that are present in
histology images and with enough examples the algorithm
could learn to filter them out. Alternatively, if this fails,
a classifier for specific artefacts could be learned so that
images containing them could be flagged and these samples
diagnosed by a pathologist.

IV. CONCLUSION

We present a machine learning enabled “automated an-
notator” for medical image analysis, that 1) learns from a
limited set of human expert annotations obtained “free” in
an unobtrusive manner through pathologist focus of attention
tracking, and 2) utilises that knowledge to label incoming
new samples which may then be used for subsequent clas-
sification/segmentation tasks. This helps to mitigate the age
old prohibitive costs of expert annotation in health science
for enough data to effectively train deep networks. The
proposed method was tested on coeliac disease image data,
but the results are encouraging enough for the method to be
employed for other similar medical imaging tasks in the near
future.
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