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Surgical instrument segmentation based on multi-scale and multi-level
feature network
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Abstract— Surgical instrument segmentation is critical for
the field of computer-aided surgery system. Most of deep-
learning based algorithms only use either multi-scale informa-
tion or multi-level information, which may lead to ambiguity
of semantic information. In this paper, we propose a new
neural network, which extracts both multi-scale and multi-
level features based on the backbone of U-net. Specifically, the
cascaded and double convolutional feature pyramid is input into
the U-net. Then we propose a DFP (short for Dilation Feature-
Pyramid) module for decoder which extracts multi-scale and
multi-level information. The proposed algorithm is evaluated
on two publicly available datasets, and extensive experiments
prove that the five evaluation metrics by our algorithm are
superior than other comparing methods.

I. INTRODUCTION

With the continuous development of science and tech-
nology, surgical robots and computer-aided surgery systems
have gradually become important clinical tools. Segmen-
tation of surgical instruments is an important task in the
field of computer-aided surgery (CAS) system. The goal of
image semantic segmentation is to give each pixel a category
label, which belongs to the underlying image perception
problem and is used as an intermediate task for instrument
tracking, pose estimation and surgical phase estimation. It
is critical to improve the surgeon’s environmental awareness
during the operation, thus high-accuracy surgical instrument
segmentation is the fundamentals for the CAS system.

Deep-learning-based methods have proved their effectivity
in natural and medical image segmentation fields. Fully Con-
volution Network (FCN) [1] usually addresses the semantic
segmentation task and achieves superior results among some
segmentation benchmarks. But it downsamples input images
by stride convolutions and/or spatial pooling layers, resulting
in a final feature map with low resolution. Wu et.al. improved
the FCN for its high computational complexity as Rethinking
Dilated Convolution in the Backbone for Semantic Segmen-
tation (FastFCN) [2]. U-net [3] is another widely applied
algorithm in medical image segmentation, which upsamples
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for 4 times and uses skip connection in the same stage.
U-net ensures that more low-level feature maps are fused.
Based on U-net [3], M-net [4] is proposed to adopt multi-
level semantic information and eliminate the need of any
post-processing step to become an end-to-end structure.

Most of present algorithms are only based on a single
type of information, such as M-net and U-net [3] base on
multi-scale information, and FCN [1] series base on multi-
level information, which may lead to ambiguity of semantic
information. In this paper, the method of combining multi-
level and multi-scale is adopted. we also adopt the U-net
as the backbone for the surgical instrument segmentation.
Since the featurized image pyramids of the U-net [3] and its
improvements, are used as their inputs, which increase the
time considerably. For the symmetry structure characteristic
of U-net [3], it does not consider the multi-scale information,
which is helpful for segmentation. Thus, in this paper, we
propose to adopt multi-level features as the input to reduce
the computational complexity. Then a dilated convolution is
adopted in the network to extract the multi-scale information
for segmentation.

Therefore the contributions of the paper are concluded
as: 1) We propose a new deep-learning based algorithm for
surgical instrument segmentation, which adopts the spatial
multi-scale and multi-level information. 2) Based on the
backbone of U-net [3], we propose a DFP module, short
for Dilation Feature-Pyramid module for decoder to extract
multi-scale and multi-level features. The feature-pyramid is
adopted as the input of our proposed algorithm. 3) We
prove the effectivity of the proposed algorithm on two
public datasets, including an Endoscopic vision dataset and
a cataract surgical dataset.

II. PROPOSED METHOD

For the surgery instrument segmentation, we propose a
new deep-learning based algorithm, as shown in the Fig.
1. U-net [3] is adopted as the primary structure. To ex-
tract more features for the network, multi-level features are
considered as the input in encoder. Then we propose a
DFP module, short for Dilation Feature-Pyramid module for
decoder structure based on depthwise-seperable convolution
[5], [6] to capture multi-scale feature and multi-level feature.
The details of the proposed framework are illustrated in the
following.

A. Encoder

To reduce the semantic loss caused by downsampling, [7]
introduces multi-scaled image as inputs to provide semantic
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Fig. 1. The flowchart of our proposed algorithm.
context gain at each level. But this way increases the com-  as:
putation complexity greatly. Inspired by the [8], we build a SClyu M
feature-pyramid based encoder with lower computation com-
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The feature pyramid is constructed by 5 layers. In order to SCawM
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The main structure of decoder is illustrated as Fig.1 (B) - 25 — Cy M — concat
based on the U-net [3]. We propose a DFP module to extract
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multi-scale features of multi-level features in the decoder
part. The first three-level (from L1 to L3) features connect
to the decoder module directly, and the other two-level (L4
and L5) features are merged into one level as input to the
DFP module of the decoder part. As shown in the Fig.1 (B),
the last three-level features (from L2 to L4) are upsampled to
the same size of the first-level L1 feature, 512 dimensions.
The first layer is concatenated with other three upsampled
layers to construct as 4 layers. They connect to DSConv
block composed by four depth-wise separable convolutions
[3] with different dilation rates, which extract different scale
features from the input of decoder. As depth-wise separable
convolution with dilation is formulated as:

F(z) =2 — SCyq,M (1)
where Cy,, is depth-wise separable convolution, extracting
multi-scale features from the input. S and M are split and
merge operations, respectively. DSConv block is expressed

where concat delegates as concatenate operation. In our
experiments, the depth-wise is valued as d = 1,2,4,8,
and four-scales features are extracted for surgery instrument
segmentation. For the propose algorithm, cross-entropy is
adopted as loss function during training, defined as:

1 n
Lop=——> yilogP, 3)

i=0
where n is the number of classes, y is the label with one-hot
format, p represents the probability of class i.

III. EXPERIMENTS

A. Dataset

In this paper, we use two publicly available datasets to
evaluate the effectivity of our proposed algorithm.

e Rigid Instrument dataset: It is from MICCAI 2015
endoscopic vision challenge-instrument segmentation and
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tracking sub-challenge [9]. This dataset consists of two sub-
datasets, robotic and non-robotic. The training data for the
non-robotic subdataset is formed by 4 laparoscopic colorectal
surgeries with a total of 160 images, and the test data is
formed by 140 images. The size of each image is 480 x 640.
All the input images and labels are adjusted to 160 x 160
and normalized as preprocessing.

e Cataract surgical dataset: The instrument segmentation
dataset is released as a part of the CATARACTS: Challenge
on automatic tool annotation for cataract surgery [10]. The
dataset consists of 25 different surgical fragments and each
fragment is composed of about 200 frames. The size of each
image is 540 x 960. In the experiment, the 3267 images from
18 fragments are used for training, 816 images from other 4
fragments are for verification and the rest 575 images from
rest 3 fragments are for testing. All the input images are
resized to 160 x 160 and normalized as preprocessing.

B. Evaluation Metrics

In the experiments, we list the following five metrics from
common semantic segmentation to evaluate the proposed
algorithm. In this paper, we consider the foreground and
background as two classes. Let ¢ be the foreground class
and j be the background class. To be more convincing, the
evaluation metrics are counted for the entire test set and the
average parameters are listed in the tables. The evaluation
metrics are defined as:

e Precision:

S nk
Precision = — kk:O v :
2 ko M + D k—o M5
e Recall:
z k
ans
Recall = — %’“—O ° -
> k=0 "t 2 p=0 5
e Accuracy:
z k z k
koM T k=0
Accuracy =
z
e F1-Score:
z k
F1— Score = . 3 X Zfzo n;: —
2X D oMt k=0 Ngi T Dok=o M)
e JoU:
z k
ToU = Zk_O 27

D=0 M+ 2o i + 2o

where n is the number of pixels, and z is the sum number
of the image.

C. Implementation Details

The proposed algorithm is implemented with pytorch
framework, which runs on a workstation equipped with
NVIDIA TITAN V GPU. For the training parameters, we
set SGD optimization with the batch size 5 with a pair of
images as input, and the Ir is set as 0.01.

TABLE I
THE RESULTS OF EVALUATION METRICS FOR ABLATION STUDY.

FP Input DFP  Precision Recall Accuracy FI1-Score IoU
X X 0.843 0.729 0.962 0.782 0.642
v X 0.857 0.783 0.960 0.818 0.693
X v 0.869 0.842 0.966 0.855 0.747
v v 0.922 0.878 0.976 0.899 0.817

D. Ablation Study

There are two improvements of our proposed algorithm,
the feature-pyramid as input of encoder and the DFP module
for decoder. Thus for the ablation study, we prove the two
improvements step by step. The ablation study is based on
the Rigid Instrument dataset [9], and results are show at Table
I. In the table, the two improvements of FP Input and DFP
stand as the feature-pyramid as input and dilation feature
pyramid module respectively. The v'means including the
improvement, and X means not containing the improvement.
The first line in the Table I is the results of our backbone
U-net. The higher evaluation metrics in the second and
third lines express that both the two improvements are
helpful to improve the segmentation accuracy. The last line
including both two improvements is the proposed algorithm
in this paper, which produces the superior evaluation metrics,
proving its effectivity for instrument segmentation.

Some segmentation experimental examples of ablation
study shown at Fig. 2, which further proves the effectivity
of our improvements. The details inside red square frame in
the figure further emphasize that our algorithm improves the
segmentation results.

E. Comparison Experiments

To prove the effectivity of our proposed algorithm, it is
compared with other 6 related algorithms, including FCN-8s
[1], FCN-16s [1], FCN-32s [1], M-net [7], Pyramid Scene
Parsing Network (PSPnet) [11] and DeepLabv3 [12]. For
DeepLabv3 architecture, we use Resnet101 to be the back-
bone. The parameters as illustrated their papers are applied
in the experiments. Moreover, our proposed algorithm adopts
5-layer-pyramid input, thus we improve the M-net with 5-
layer input named as M-net 51.

TABLE II
THE RESULTS OF EVALUATION METRICS ON THE CATARACT SURGICAL
DATASET.
Precision  Recall ~ Accuracy  FI-Score IoU
FCN-8s 0.731 0.783 0.984 0.756 0.608
FCN-16s 0.682 0.643 0.979 0.662 0.490
FCN-32s 0.667 0.623 0.978 0.644 0.478
M-Net 0.740 0.824 0.985 0.780 0.608
M-Net 51 0.783 0.705 0.984 0.742 0.590
PSPnet 0.578 0.449 0.972 0.506 0.330
DeepLabv3 0.470 0.754 0.965 0.579 0.408
AttU-net 0.770 0.690 0.983 0.728 0.572
Ours 0.814 0.775 0.987 0.794 0.659
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baseline
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Fig. 2. From left to right: the segmentation groundtruth, segmentation results by the baseline, the baseline plus one improvement and the last our proposed
algorithm with two improvements. We give priority to enlarging the details when dealing with more than one difference in the same picture.

TABLE III
THE RESULTS OF EVALUATION METRICS ON THE RIGID INSTRUMENT

TEST SET.

Precision  Recall ~ Accuracy  FI-Score IoU

FCN-8s 0.759 0.820 0.949 0.788 0.51
FCN-16s 0.756 0.900 0.955 0.822 0.698
FCN-32s 0.836 0.627 0.942 0.716 0.558
M-Net 0.670 0.824 0.938 0.772 0.670
M-net 51 0.918 0.828 0.971 0.871 0.771
PSPnet 0.770 0.500 0.925 0.606 0.435
DeepLabv3 0.690 0.641 0.925 0.665 0.498
AttU-net 0.778 0.851 0.955 0.813 0.686
Ours 0.922 0.878 0.976 0.899 0.817

The evaluation metrics of our algorithm and other compar-
ison methods based on the two datasets are listed in the Table
IT and III, respectively. In the table, although Recall by our
algorithm is a little higher than that by FCN-8s or FCN-16s,
most of the evaluation metrics by our algorithm are better
than those by all other algorithms. For visual evaluation,
sample images from the two datasets are shown in the Fig.
3. The the red square frame of figures by FCN-8s and FCN-
16s express that they cannot segment the instruments details
correctly, but the segment results by our algorithm are better.

IV. CONCLUSION

In this paper, we proposed a new neural network algorithm
for surgical instrument segmentation, which extracted both
the multi-scale and multi-level features. It adopted the feature
pyramid instead of image pyramid to reduce the computa-
tional complexity. Then the proposed DFP (short for Dilation
Feature-Pyramid) module extracted multi-scale and multi-
level features for segmentation. The five evaluation metrics
of ablation study expressed the effectivity of the two im-
provements. We also compared the proposed algorithm with
other algorithms based on two datasets. Both the evaluation
metrics and the segmentation samples proved its superiority.

REFERENCES

[1] Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully Convolu-
tional Networks for Semantic Segmentation. IEEE Computer Society,
2017.

[2] Huikai Wu, Junge Zhang, Kaiqi Huang, Kongming Liang, and
Yu Yizhou. Fastfcn: Rethinking dilated convolution in the backbone
for semantic segmentation. In arXiv preprint arXiv:1903.11816, 2019.

!!<

!!

FCN-8s FCN-16s FCN-32s M-net
M-net 51 PSPnet DeeplLabv3 AttU-net Ours
FCN-8s FCN-16s FCN-32s M-net
M-net 51 PSPnet Deeplabv3 AttU-net Ours
Fig. 3. Segmentation samples. The first two lines are some results of

the caratact surgical dataset, and the last two lines are results of the rigid
instrument test dataset.

[3] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convo-
lutional networks for biomedical image segmentation. In International
Conference on Medical image computing and computer-assisted inter-
vention, pages 234-241. Springer, 2015.

[4] Raghav Mehta and Jayanthi Sivaswamy. M-net: A convolutional neural
network for deep brain structure segmentation. In IEEE International
Symposium on Biomedical Imaging, pages 437440, 2017.

[5] Francois Chollet. Xception: Deep learning with depthwise separable
convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017.

[6] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

[71 Huazhu Fu, Jun Cheng, Yanwu Xu, Damon Wing Kee Wong, Jiang
Liu, and Xiaochun Cao. Joint optic disc and cup segmentation
based on multi-label deep network and polar transformation. IEEE
transactions on medical imaging, 37(7):1597-1605, 2018.

[8] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath
Hariharan, and Serge Belongie. Feature pyramid networks for object
detection. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017.

[91 Miccai. http://endovissub-instrument.
grand-challenge.org/.

[10] Miccai. https://cataracts.grand-challenge.org/.

[11] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and
Jiaya Jia. Pyramid scene parsing network. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

[12] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig
Adam. Rethinking atrous convolution for semantic image segmenta-
tion. CoRR, abs/1706.05587, 2017.

2675



