Surgical instrument segmentation based on multi-scale and multi-level feature network

Yiming Wang¹, Zhongxi Qiu², Yan Hu², Hao Chen¹, Fangfu Ye³, Jiang Liu²

Abstract—Surgical instrument segmentation is critical for the field of computer-aided surgery system. Most of deep-learning based algorithms only use either multi-scale information or multi-level information, which may lead to ambiguity of semantic information. In this paper, we propose a new neural network, which extracts both multi-scale and multi-level features based on the backbone of U-net. Specifically, the cascaded and double convolutional feature pyramid is input into the U-net. Then we propose a DFP (short for Dilation Feature-Pyramid) module for decoder which extracts multi-scale and multi-level information. The proposed algorithm is evaluated on two publicly available datasets, and extensive experiments prove that the five evaluation metrics by our algorithm are superior than other comparing methods.

I. INTRODUCTION

With the continuous development of science and technology, surgical robots and computer-aided surgery systems have gradually become important clinical tools. Segmentation of surgical instruments is an important task in the field of computer-aided surgery (CAS) system. The goal of image semantic segmentation is to give each pixel a category label, which belongs to the underlying image perception problem and is used as an intermediate task for instrument tracking, pose estimation and surgical phase estimation. It is critical to improve the surgeon’s environmental awareness during the operation, thus high-accuracy surgical instrument segmentation is the fundamentals for the CAS system.

Deep-learning-based methods have proved their effectiveness in natural and medical image segmentation fields. Fully Convolution Network (FCN) [1] usually addresses the semantic segmentation task and achieves superior results among some segmentation benchmarks. But it downsamples input images by stride convolutions and/or spatial pooling layers, resulting in a final feature map with low resolution. Wu et al. improved the FCN for its high computational complexity as Rethinking Dilated Convolution in the Backbone for Semantic Segmentation (FastFCN) [2]. U-net [3] is another widely applied algorithm in medical image segmentation, which upsamples for 4 times and uses skip connection in the same stage. U-net ensures that more low-level feature maps are fused. Based on U-net [3], M-net [4] is proposed to adopt multi-level semantic information and eliminate the need of any post-processing step to become an end-to-end structure.

Most of present algorithms are only based on a single type of information, such as M-net and U-net [3] base on multi-scale information, and FCN [1] series base on multi-level information, which may lead to ambiguity of semantic information. In this paper, the method of combining multi-level and multi-scale is adopted. We also adopt the U-net as the backbone for the surgical instrument segmentation. Since the featurized image pyramids of the U-net [3] and its improvements, are used as their inputs, which increase the time considerably. For the symmetry structure characteristic of U-net [3], it does not consider the multi-scale information, which is helpful for segmentation. Thus, in this paper, we propose to adopt multi-level features as the input to reduce the computational complexity. Then a dilated convolution is adopted in the network to extract the multi-scale information for segmentation.

Therefore the contributions of the paper are concluded as: 1) We propose a new deep-learning based algorithm for surgical instrument segmentation, which adopts the spatial multi-scale and multi-level information. 2) Based on the backbone of U-net [3], we propose a DFP module, short for Dilation Feature-Pyramid module for decoder to extract multi-scale and multi-level features. The feature-pyramid is adopted as the input of our proposed algorithm. 3) We prove the effectiveness of the proposed algorithm on two public datasets, including an Endoscopic vision dataset and a cataract surgical dataset.

II. PROPOSED METHOD

For the surgery instrument segmentation, we propose a new deep-learning based algorithm, as shown in the Fig. 1. U-net [3] is adopted as the primary structure. To extract more features for the network, multi-level features are considered as the input in encoder. Then we propose a DFP module, short for Dilation Feature-Pyramid module for decoder structure based on depthwise-separable convolution [5], [6] to capture multi-scale feature and multi-level feature. The details of the proposed framework are illustrated in the following.

A. Encoder

To reduce the semantic loss caused by down sampling, [7] introduces multi-scaled image as inputs to provide semantic
context gain at each level. But this way increases the computation complexity greatly. Inspired by the [8], we build a feature-pyramid based encoder with lower computation complexity. As shown in Fig. 1 leftmost two columns, we first use conv1x1 with stride=1 to produce 32-dimension feature. The feature pyramid is constructed by 5 layers. In order to reduce the semantic context loss caused by downsampling, every layer has a cascade of two maxpoolings, which include maxpooling the last layer feature and the double convolutional feature. The output of double convolutional feature is also the decoder input of the same level.

B. DFP for Decoder

The main structure of decoder is illustrated as Fig.1 (B) based on the U-net [3]. We propose a DFP module to extract multi-scale features of multi-level features in the decoder part. The first three-level (from L1 to L3) features connect to the decoder module directly, and the other two-level (L4 and L5) features are merged into one level as input to the DFP module of the decoder part. As shown in the Fig.1 (B), the last three-level features (from L2 to L4) are upsampled to the same size of the first-level L1 feature, 512 dimensions. The first layer is concatenated with other three upsampled layers to construct as 4 layers. They connect to DSConv block composed by four depth-wise separable convolutions [3] with different dilation rates, which extract different scale features from the input of decoder. As depth-wise separable convolution with dilation is formulated as:

\[F(x) = x \rightarrow \begin{cases} SC_{dw}M \\ SC_{dw}M \\ SC_{dw}M \\ SC_{dw}M \end{cases} \rightarrow \text{concat} \]

\[= \begin{cases} x \rightarrow SC_{dw}M \\ x \rightarrow SC_{dw}M \\ x \rightarrow SC_{dw}M \\ x \rightarrow SC_{dw}M \end{cases} \rightarrow \text{concat} \]

where \(\text{concat} \) delegates as concatenate operation. In our experiments, the depth-wise is valued as \(d = 1, 2, 4, 8 \), and four-scales features are extracted for surgery instrument segmentation. For the propose algorithm, cross-entropy is adopted as loss function during training, defined as:

\[L_{CE} = -\frac{1}{n} \sum_{i=0}^{n} y_i \log P_i \]

where \(n \) is the number of classes, \(y \) is the label with one-hot format, \(P \) represents the probability of class \(i \).

III. EXPERIMENTS

A. Dataset

In this paper, we use two publicly available datasets to evaluate the effectivity of our proposed algorithm.

- Rigid Instrument dataset: It is from MICCAI 2015 endoscopic vision challenge-instrument segmentation and
tracking sub-challenge [9]. This dataset consists of two sub-
datasets, robotic and non-robotic. The training data for the
non-robotic subdataset is formed by 4 laparoscopic colorectal
surgeries with a total of 160 images, and the test data is
formed by 140 images. The size of each image is 480 × 640.
All the input images and labels are adjusted to 160 × 160
and normalized as preprocessing.

- Cataract surgical dataset: The instrument segmentation
dataset is released as a part of the CATARACTS: Challenge
on automatic tool annotation for cataract surgery [10]. The
dataset consists of 25 different surgical fragments and each
fragment is composed of about 200 frames. The size of each
image is 540 × 960. In the experiment, the 3267 images from
18 fragments are used for training, 816 images from other 4
fragments are for verification and the rest 575 images from
rest 3 fragments are for testing. All the input images are
resized to 160 × 160 and normalized as preprocessing.

B. Evaluation Metrics

In the experiments, we list the following five metrics from
common semantic segmentation to evaluate the proposed
algorithm. In this paper, we consider the foreground and
background as two classes. Let i be the foreground class
and j be the background class. To be more convincing, the
evaluation metrics are counted for the entire test set and
the average parameters are listed in the tables. The evaluation
metrics are defined as:

- Precision:

$$Precision = \frac{\sum_{k=0}^{z} n_{ik}^{k}}{\sum_{k=0}^{z} n_{i}^{k} + \sum_{k=0}^{z} n_{j}^{k}}$$

- Recall:

$$Recall = \frac{\sum_{k=0}^{z} n_{ji}^{k}}{\sum_{k=0}^{z} n_{j}^{k} + \sum_{k=0}^{z} n_{ij}^{k}}$$

- Accuracy:

$$Accuracy = \frac{\sum_{k=0}^{z} n_{ij}^{k} + \sum_{k=0}^{z} n_{ji}^{k}}{z}$$

- F1-Score:

$$F1_Score = \frac{2 \times \sum_{k=0}^{z} n_{ij}^{k}}{2 \times \sum_{k=0}^{z} n_{ij}^{k} + \sum_{k=0}^{z} n_{ji}^{k} + \sum_{k=0}^{z} n_{ij}^{k}}$$

- IoU:

$$IoU = \frac{\sum_{k=0}^{z} n_{ij}^{k}}{\sum_{k=0}^{z} n_{ij}^{k} + \sum_{k=0}^{z} n_{ji}^{k} + \sum_{k=0}^{z} n_{ij}^{k}}$$

where n is the number of pixels, and z is the sum number of
the image.

C. Implementation Details

The proposed algorithm is implemented with pytorch
framework, which runs on a workstation equipped with
NVIDIA TITAN V GPU. For the training parameters, we
set SGD optimization with the batch size 5 with a pair of
images as input, and the lr is set as 0.01.

<table>
<thead>
<tr>
<th>DATASET</th>
<th>Precision</th>
<th>Recall</th>
<th>Accuracy</th>
<th>F1-Score</th>
<th>IoU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cataract</td>
<td>0.814</td>
<td>0.775</td>
<td>0.987</td>
<td>0.794</td>
<td>0.659</td>
</tr>
</tbody>
</table>

D. Ablation Study

There are two improvements of our proposed algorithm,
the feature-pyramid as input of encoder and the DFP module
for decoder. Thus for the ablation study, we prove the two
improvements step by step. The ablation study is based on
the Rigid Instrument dataset [9], and results are show at Table
I. In the table, the two improvements of FP Input and DFP
stand as the feature-pyramid as input and dilation feature
pyramid module respectively. The ✓ means including the
improvement, and ✗ means not containing the improvement.
The first line in the Table I is the results of our backbone
U-net. The higher evaluation metrics in the second and
third lines express that both the two improvements are
helpful to improve the segmentation accuracy. The last line
including both two improvements is the proposed algorithm
in this paper, which produces the superior evaluation metrics,
proving its effectivity for instrument segmentation.

Some segmentation experimental examples of ablation
study shown at Fig. 2, which further proves the effectivity
of our improvements. The details inside red square frame in
the figure further emphasize that our algorithm improves the
segmentation results.

E. Comparison Experiments

To prove the effectivity of our proposed algorithm, it is
compared with other 6 related algorithms, including FCN-8s
[1], FCN-16s [1], FCN-32s [1], M-net [7], Pyramid Scene
Parsing Network (PSPnet) [11] and DeepLabv3 [12]. For
DeepLabv3 architecture, we use Resnet101 to be the back-
bone. The parameters as illustrated their papers are applied
in the experiments. Moreover, our proposed algorithm adopts
5-layer-pyramid input, thus we improve the M-net with 5-
layer input named as M-net 5l.

<table>
<thead>
<tr>
<th>DATASET</th>
<th>Precision</th>
<th>Recall</th>
<th>Accuracy</th>
<th>F1-Score</th>
<th>IoU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ours</td>
<td>0.814</td>
<td>0.775</td>
<td>0.987</td>
<td>0.794</td>
<td>0.659</td>
</tr>
</tbody>
</table>
The evaluation metrics of our algorithm and other comparison methods based on the two datasets are listed in the Table II and III, respectively. In the table, although Recall by our algorithm is a little higher than that by FCN-8s or FCN-16s, most of the evaluation metrics by our algorithm are better than those by all other algorithms. For visual evaluation, sample images from the two datasets are shown in the Fig. 3. The red square frame of figures by FCN-8s and FCN-16s express that they cannot segment the instruments details correctly, but the segment results by our algorithm are better.

IV. Conclusion

In this paper, we proposed a new neural network algorithm for surgical instrument segmentation, which extracted both the multi-scale and multi-level features. It adopted the feature pyramid instead of image pyramid to reduce the computational complexity. Then the proposed DFP (short for Dilation Feature-Pyramid) module extracted multi-scale and multi-level features for segmentation. The five evaluation metrics of ablation study expressed the effectivity of the two improvements. We also compared the proposed algorithm with other algorithms based on two datasets. Both the evaluation metrics and the segmentation samples proved its superiority.

References

