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Abstract— A deep learning technique based on semantic seg-
mentation was implemented into the blood pressure detection
points field. Two models were trained and evaluated in terms
of a reference detector. The proposed methodology outperforms
the reference detector in two of the three classic benchmarks
and on signals from a public database that were modified with
realistic test maneuvers and artifacts. Both models differentiate
regions with valid information and artifacts. So far, no other
delineator had shown this capacity.

I. INTRODUCTION

The analysis of the arterial blood pressure (ABP) consti-
tutes one of the practices to evaluate the state of the circu-
latory system. This analysis allows the characterization and
early detection of cardiovascular pathologies. The ABP mor-
phology (ABPM) is determined by the ventricular ejection
pattern and the elastic nature of the arterial tree [1]. Values
such as the diastolic and systolic blood pressure (DBP and
SBP, respectively) and the occurrence of the dicrotic notch
(DN) provide relevant information related to the morphology.
ABPM can suffer local alterations, such as those induced by
the respiratory rhythm or specific vascular test maneuvers.
Additionally, signals are exposed to artifacts that impact
the quality of the measurement. The DBP is referenced
to the onset of pulse and to the aortic valve opening to
blood ejection. The SBP is defined as the occurrence of
the maximum pressure value. The DN represents the closure
of the aortic valve and is used to calculate the ejection’s
duration and the start of the diastolic phase. Therefore, the
detection of these particular points of ABPM, hereafter called
fiducial points (FiP), has to be accurately determined to avoid
errors in the evaluation of vascular dynamics.

In previous studies, different delineators have been pro-
posed to be applied to ABPM analysis. Among the most
common techniques we can find: weighted slope sum func-
tion with adaptive thresholds [2] and ABP feature extraction
with logical decision gates [3] for the peak; wavelet-based
cascaded adaptive filter [4] for the onsets; analysis of deriva-
tives with logical decision gates [5] for the DN. Only a few
studies have presented a transversal analysis [6], [7], [8]. In
particular, Pulse Delienator (PUD) proposed by [6] focuses
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on the analysis of the first ABP derivative, where different
logic gates are applied to detect the FiP.

The methodology proposed in this work considers the
signals as one-dimensional (1D) images and applies seman-
tic segmentation and data augmentation techniques. Then,
simple logical gates are applied to detect the FiP. This
methodology analyzes the signal in an offline way.

II. MATERIALS AND METHODS
A. Data Description

The public MIMIC-III database (DB) [9] was used in this
study for training the models. This is composed of a myriad
of different types of data obtained from patients in intensive-
care units. In particular, only ABP records were considered,
which were stored at a sampling frequency (Sf) of 125 Hz.

For benchmark purpose, three public DBs with annotations
from experts and one other computed from our process-
ing section II-B were used. The first one, called CSL [3]
consists of two records of 60 min each one. The records
contain annotations of the peak. The second is known as
the Fantasia DB (FTS) [10]. It consists of 20 signals of 120
min each one. All signals contain heartbeat annotations from
the QRS complex (QRSc)of the electrocardiogram (ECG).
Again, only the records with ABP signals were handled. The
third is the Polysomnographic DB (SLP) [11]. It consists
of approximately 80 h of ABP and ECG recordings of 16
subjects with annotations of the beats in the ECG channel.
As the architectures presented below were trained for 125
Hz, all signals were resampled to that frequency. Finally,
15% of the dataset available after the processing stage was
used as the fourth DB. This subset will be called MIMIC
processed dataset (MPD), as can be observed in Fig. 1. Data
augmentation techniques, described below, were only applied
once to the MPD.

As a summary, CSL was used to evaluate the peaks
detection directly. FTS and SLP were used for the onset,

Fig. 1. Proposed methodology
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and evaluation was done indirectly through ECG annotations.
Finally, MPD was used to evaluate the whole of the FiP.

B. Processing and Labeling Description

Only records containing ABP signals longer than 10
min were analyzed from the MIMIC DB to ensure signal
stability. For each signal, two 15-s segments separated by a
5-min interval were analyzed. For each beat, the temporal
occurrences of the FiP were recorded. Due to the lack of
fully labeled ABPMs, PUD [6] was used to detect the FiP
and to define the labels of each signal point.

The following criteria were used to ensure good quality in
the segments. First, segments constituted by 5% of constant
values (no signal info) or peaks (saturation in sensor) were
discarded, as in [12]. Then, the characteristics of each
heartbeat were analyzed. The SBP was limited between 80
and 200 mmHg and the DBP to 50 and 120 mmHg. The
duration of one heartbeat was limited from 62.5 to 187.5
ms. The skewness index was set to be greater than 0 to
avoid unrealistic ABPM [13]. A heartbeat was marked when
it did not meet any of these requirements. If more than half
of the beats in a segment were marked, the segment was
discarded. Finally, if a segment had more than 7 mmHg
difference between the average DBP and the minimum DBP,
the whole segment was also discarded. The same restriction
was applied to SBP, but with a difference of 30 mmHg.
When a segment was discarded, the next two segments were
analyzed. If no pairs of good quality segments were found in
the record, it was discarded and the next one was evaluated.
In the next step the signal points were classified depending
on the heartbeat interval to which they belong. Thus, the
classes [onset - peak] (OP), [peak - DN] (PD) and [DN -
onset] (DO) were defined. The regions with beats that were
marked in the previous step but were not enough to discard
the segment were classified as [artifact] (AR).

C. Data Augmentation Description

Data augmentation is a technique that consists of applying
specific random transformations on the data before using it.
The implemented variations were of two types: the replace-
ment of beats by artifacts and changes in the ABP baseline.

In the first type, up to 20% of the beats were randomly
removed and the class of points was changed to AR. Then,
values of the signal corresponding to the regions of AR
class were replaced by a constant value K1 or by a straight
line that joins the previous beat to the one eliminated with
the next one. K1 values were taken from a random uniform
distribution U (-0.5, 0.5). Finally, to the replaced points it
was added a Gaussian noise N (0, σarti f act ), where σarti f act
was randomly sampled from a U (0.01, 0.5)

Independently to the replacement of beats by artifacts,
the second type of variation was added. This consisted of
adding a sigmoid function σ(x), a sinus function sin(x),
or making no change at all. These three cases had the
same probabilities. σ(x) was sampled in the range [-5,
5] and was used to represent an increase or decrease in
ABP baseline. It can be observed in specific test, as in the

Fig. 2. Signal example applying data augmentation techniques. The OP, PD,
DO and AR classes are colored in red, green, blue, and black respectively.
The scaled Valsalva’s maneuver σ(x) is shown in magenta.

Fig. 3. Neural network architectures. The dashed arrows mean for the two
possible models. Each model ends with a point-wise softmax function.

Valsalva’s maneuver [14], where the baroreflex sensitivity, an
indicator of various pathologies, is revealed [15]. To cover
a larger number of scenarios, σ(x) was scaled by a constant
value K2 randomly sampled from U (0.2, 0.5) and multiplied
by 1 or -1, increase or decrease, respectively. sin(x) was
used to represent the variations in ABPM produced by the
respiration. Phase, frequency and amplitude were randomly
sampled from U (0, 2π), U (0.1, 0.3) and U (0.05, 0.1)
respectively. Finally, signals were scaled in the range [0, 1].

Data augmentation techniques were randomly repeated
during the training while, according to Fig. 1, they were
applied once to create the MPD. Only 8.192 s (1024 time-
steps) after the first second were taken from each signal
to generate MPD, and the remaining were discarded. An
example of data augmentation techniques can be seen in
Fig. 2. The noise was not added for visual appreciation.

D. Neural Network Architecture

Semantic segmentation is a technique widely applied to
images. This approach was implemented to 1D ABP signals.
Two models were trained to classify each signal’s point
based on the work of [16]. The first one is a traditional
U-Net. The second is the U-Net with an 8-layer temporal
convolutional network [17] (TCN), hereafter called U-TCN.
The architectures are summarized in Fig. 3.

The U-Net involves an encoder-decoder with skip connec-
tions. At the end of each encoder level, the signal is com-
pressed with a maxpool operation and the decoder expands it
again with a transpose convolution (T.Conv) operation. The
decoder generates specific features to each level from the
feature map of the previous level and the corresponding con-
nection with the encoder. In our architecture, each level of the
encoder and decoder contained two blocks of convolution,
batch normalization and ReLU activation (Conv.*2).
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Fig. 4. Detection method. The black shapes are the fiducial points detected.
Blue, green, and red lines represent the predicted classes dicrotic notch -
onset, peak - dicrotic notch, and onset - peak, respectively.

TCN’s architecture was developed to retain sequence in-
formation of any length. The retention is achieved with two
techniques. The first one is the use of dilated convolutions
that exponentially increase the reception field of each layer.
The second is the use of residual blocks. This effectively
allows layers to learn modifications to the identity mapping
rather than the entire transformation, which has been shown
to benefit deep neural networks [17].

Outputs from the models were obtained from a point-wise
softmax function over the final feature map of size equal to
four (one per class). As a penalization, the cross-entropy
loss function was used. To update the models the Adam
optimizer was used. The learning rate value was set to 0.001.
Each model was trained for 20 epochs with the 72,5% from
the processed MIMIC DB, leaving 12,5% to validation. The
remaining 15% is the aforementioned MPD dataset.

E. Point Detection

Following the point classification, a method was imple-
mented to mark the FiP. First, potential FiP are marked when
there is a meaningful change of class in the classification. For
example, only the points that were classified as DO and that
were preceded by a PD point were marked as a potential DN
event. The only exception was the onset event, which could
also be preceded by a point classified as AR. Second, to solve
the multiple marks of DN along a single beat and improve
the results, a backward scan of the signal was done. Only
the previous marked points that follow the logic temporal
sequence: “end of pulse - dicrotic notch - peak - onset”
were considered. The “end of pulse” could be either a point
classified as OP or AR. Finally, for each heartbeat only the
first DN marked was kept in a backward sense. Black shapes
in Fig. 4 illustrate the detection method.

III. EVALUATION AND RESULTS

For evaluation purpose, two classic benchmark parameters
were observed: sensitivity (Se) and positive predictivity (P+):

Se = T P/(T P+FN); P+ = T P/(T P+FP)

where T P, FN and FP refer to number of true positive,
false negative, and false positive, respectively. Additionally,
an error rate E% was also evaluated.

E% = (FP+FN)/(T P+FP)

As the models had a fixed input size, the predictions were
done by batches and then were rejoined. The detection’s

TABLE I
PERFORMANCE ON COMMON BENCHMARK DATABASES

Data Model TP FP FN Se P+ E%

PUD 135748 24 2082 98.29 99.98 1.56
FTS U-Net 142806 343 1573 98.91 99.76 1.34

U-TCN 142833 320 1546 98.93 99.78 1.30
PUD 315823 17 2589 99.19 99.99 0.83

SLP U-Net 365695 1368 2651 99.28 99.63 1.09
U-TCN 365996 1377 2350 99.36 99.63 1.01
PUD 13055 21 24 99.82 99.84 0.34

CSL U-Net 13052 0 27 99.79 100.00 0.21
U-TCN 13054 0 25 99.85 100.00 0.19

Se, P+ and E% in percentage.

TABLE II
EVALUATION ON MIMIC PROCESSED DATASET

Point Model TP FP FN Se P+ E%

Onset: PUD 59727 9029 4406 93.13 86.87 19.54
64133 U-Net 63810 118 323 99.50 99.82 0.69

U-TCN 63798 179 335 99.48 99.72 0.80
Peak: PUD 59888 8918 4328 93.26 87.04 19.25
64216 U-Net 64042 140 174 99.73 99.78 0.49

U-TCN 64017 138 199 99.69 99.78 0.53
D.N. PUD 59012 9701 5143 91.98 85.88 21.60
64155 U-Net 63465 580 690 98.92 99.09 1.98

U-TCN 63485 618 670 98.96 99.04 2.01
D.N. is to dicrotic notch. Se, P+ and E% in percentage.

evaluation with respect to CSL, FTS and SLP is summarized
in Table I. As mentioned, in the FTS and SLP only are
available QRSc annotations. To simplify the analysis, it
will be omitted the occasional discrepancy between QRSc
annotations and effective ABPM [7]. A TP was considered
if between two QRSc annotations were one detection. But if
between two consecutive QRSc more than one was detected,
the first was considered TP and the others FP. If none was
found, it was counted as a FN. The lower E% for FTS
was 1.30% with the U-TCN model, while for SLP was
0.83% with PUD. Particularly, as the CSL data allow direct
detection on the peak, a 8-ms windows was determined. In
this case, the lower E% was 0.19% with the U-TCN model.

A smaller window of 3-ms was taken for a transversal
evaluation of all FiPs with the MPD set. If multiple points
were marked in the 3-ms window, one was considered TP and
the others as FP. Results are given in Table II. The lower E%

for the onset, peak, and DN were 0.69%, 0.49%, and 1.98%
respectively, reported by the U-Net model. It was followed
by the U-TCN where the E% for the onset, peak, and DN
were 0.80%, 0.53%, and 2.01% respectively. The E% with
PUD for the onset, peak, and DN were 19.54%, 19.25%,
and 21.06% respectively. The FP quantities due to regions
of artifacts for each FiP in PUD were 6033. Hence, the FP
on PUD due to the built-in baseline variations were 2996,
2885, and 3668 for the onset, peak, and DN, respectively.

IV. DISCUSSIONS AND FUTURE WORKS

Despite the wide variety adopted by ABPMs, the presented
methodology was successfully applied, where both FiP and
artifacts were adequately differentiated. Additionally, this
methodology has the potential to further improve its per-
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Fig. 5. Comparison between Pulse Delineator (PUD) and U-TCN model
for MIMIC Processed Dataset (MPD). (a) Peak detections. (b) Over-
penalization examples for the detection of dicrotic notches.

formance in terms of the incorporation of a wide variety of
ABPM during training phase. This is a limitation that seems
to have the algorithms based on signal processing. For them,
the use of logical gates and thresholds seems to be the way to
increase the range of ABPM where they success. However,
the proposed methodology requires labeled data.

From Table I it can be observed that at least one of
the proposed models leads the E% performances in terms
of FTS and CSL. Despite that for SLP the lower E% was
achieved by PUD both models showed similar performances.
It is important to note the differences in total annotations
(FP + FN) between PUD and our results on FTS and SLP.
This is because for this work, a visual check of all the
signals and annotations was not performed as asserted by
[6]. Nevertheless, it is pertinent to highlight that in general,
all the models had fewer FN quantities than PUD. Therefore,
the presented methodology results in greater sensitivity to
the onset. In summary, although based on the response of
the work by [6] to get the point labels, our approach proved
to be, in accuracy terms, competitive with the state of the
art in three classical benchmark DBs.

The MPD set was used for a transversal evaluation of all
the FiP. Results in Table II show a better performance than
PUD. Even without accounting the errors caused on artifact
regions, PUD showed to be less regular in the detection to
realistic modifications made in section II-C. It can be seen
a large improvement in the FiP detection for both models,
compared with the reference delineator PUD. Some results
with model U-TCN can be seen in Fig. 5. Furthermore, for
the models proposed, it was observed that in some signals the
FN and FP accounts were over-penalized, in particular for
DN detection. That happened when the labeling in section
II-B was found to be incorrect. The generalization property
from statistical learning encourages correct classifications,
even though they were counted as incorrect later. A case
of this is shown in Fig. 5(b). In summary, even ignoring the
error due to artifact regions and the over-penalization on DN,
the methodology presented was superior, despite the models.

Results show that batch analysis does not affect detection
performance. Furthermore, having enough memory to train
the models, the same methodology could be applied for
a higher Sf and longer input size. On the other hand,
simple custom penalty functions [16] were explored and
three additional classes were added, each one specific to

the FiP. This allowed us to remove the step detailed in
section II-E. Nevertheless, due to the class imbalance, this
method could not be fully implemented although it could be
considered as future research.

V. CONCLUSIONS
In this paper a new methodology for detecting FiP in

the ABPM is presented. Unlike other works where different
signal processing techniques and intricate logic gates are
used, our work is based on deep learning techniques and
naive logic gates. Our methodology also differentiate regions
of common artifacts. It could be observed that the detection
of FiP is accurate even in the context of simulated maneuvers
such as Valsalva. A dataset randomly affected with artifacts
and realistic modification of the ABP baseline, but without
affecting the temporal occurrences of the FiP, was generated.
In this scenario, our approach proved to be efficient in terms
of errors during detection.
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