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Abstract— Brain surgery is complex and has evolved as a
separate surgical specialty. Surgical procedures on the brain
are performed using dedicated micro-instruments which are
designed specifically for the requirements of operating with
finesse in a confined space. The usage of these microsurgical
tools in an operating environment defines the surgical skill
of a surgeon. Video recordings of micro-surgical procedures
are a rich source of information to develop automated
surgical assessment tools that can offer continuous feedback
for surgeons to improve their skills, effectively increase the
outcome of the surgery, and make a positive impact on their
patients. This work presents a novel deep learning system
based on the Yolov5 algorithm to automatically detect, localize
and characterize microsurgical tools from recorded intra-
operative neurosurgical videos. The tool detection achieves a
high 93.2% mean average precision. The detected tools are
then characterized by their on-off time, motion trajectory and
usage time. Tool characterization from neurosurgical videos
offers useful insight into the surgical methods employed by a
surgeon and can aid in their improvement. Additionally, a new
dataset of annotated neurosurgical videos is used to develop the
robust model and is made available for the research community.

Clinical relevance— Tool detection and characterization
in neurosurgery has several online and offline applications
including skill assessment and outcome of the surgery. The
development of automated tool characterization systems for
intra-operative neurosurgery is expected to not only improve
the surgical skills of the surgeon, but also leverage in training
the neurosurgical workforce. Additionally, dedicated neurosur-
gical video based datasets will, in general, aid the research
community to explore more automation in this field.

I. INTRODUCTION

Human beings tend to make errors in their daily activities
that are widely accepted provided that the errors do not
have strong ramifications. The same notion applies even to
healthcare and surgical fields, where doctors or surgeons
offer their services in the form of consultation or surgical
procedures based on their expertise and skill. Technological
advances have played an important role in evaluating and
assessing professionals in different fields [1], [2], [3], [4]
as well as in preventing errors [5]. However, concerning
surgical procedures, poor performance is often attributed to
inadequate training and feedback [6], [7]. Thus, continuous
positive improvements can be achieved by providing indi-
vidualized objective feedback regarding a surgeon’s skill [8].
A rich source of information regarding surgical procedures
comes from recorded videos of surgeries. These recordings
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can capture the characteristics of a surgeon’s operating skill
such as the different kinds of tools that the surgeon employs,
the tool holding time, tool operating frequency, number
of operating hands, the types and precision of cuts, and
various other traits. The videos also contain patient-specific
information which is envisioned to be useful in standardizing
and automating the overall surgical process for similarly
diagnosed problems. The tool-specific parameters are known
to be effective in assessing surgical skill [9], [10]. However,
manual assessment of skill from videos is time consuming
and not feasible. It is hence necessary and important to
develop systems to automatically analyze surgical skills from
videos.

The first and foremost step, however, is to accurately
characterize the surgical tools that are used throughout the
procedure. This involves detection and localization of tools
followed by the characterization of their usage. Several works
exist to detect surgical tools. Early works include methods
that use markers such as LEDs [11] and RFIDs [12], which
raise concerns on the safety of the surgical procedure and the
convenience of their usage. Moreover, they do not provide
the flexibility and scope that image-based approaches offer.
Kumar et al. [13] proposed to model surgical instruments
using histogram of oriented gradients (HOG) features derived
from the computer vision domain and the Lagrangian support
vector machine (LSVM) classifier. Sznitman et al. [14]
built upon the deformable detector proposed by [15] and
integrated it with a gradient-based tracker to detect retinal
microsurgical tools. Allan et al. [16] proposed a pixel-
wise detection method using color, scale-invariant feature
technique (SIFT), and HOG features on laparoscopic surgical
sources. Since the rise of deep learning techniques, partic-
ularly convolutional neural networks (CNN) for computer
vision tasks, research on surgical tool detection and localiza-
tion has leveraged the immense advantages that deep learning
provides. Choi el al. [17] proposed a detection model using a
CNN and th YOLO algorithm for laproscopic robot-assisted
surgeries. The introduction of the M2CAI dataset [18] served
as an additional motivation. The authors proposed a multi-
task network architecture that showed promising results on
the dataset. The authors also remark that significant improve-
ment is possible if more data is collected [19]. Kanakatte et
al. [20] use a spatio-temporal deep network to segment and
localize tools in laparoscopic cholecystectomy surgeries.

In general, tool localization and classification in laparo-
scopic and endoscopic surgical videos have played an im-
portant role in realizing automated tool detection. However,
neurosurgical videos present different kinds of challenges
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(a) Suction and Cusa (b) Suction and Bipolar Forceps (c) Suction and Dissecting Forceps

Fig. 1: Sample annotated frames from the dataset

such as a low field of view, a small operating region, low light
conditions to view the operating space and the distinct nature
of the tools used. Additionally, neurosurgery is a specialized
field wherein the operating procedures differ from other
studied surgeries and have relatively fewer practitioners in
the world [21]. Training the neurosurgical workforce through
automated systems offers significant scope in meeting the
current demands. Hence, special attention needs to be in-
vested for automating the assessment of neurosurgical oper-
ating skill to help in training and individualized feedback-
based improvement. However, very few works exist that
pertain to the detection and characterization of tools in
neurosurgery.

This paper presents a neurosurgical tool detection and
characterization system built using the latest YOLOv5 object
detection algorithm [22], [23]. The localization and charac-
terization of neurosurgical tools using deep learning and the
object detection approach is a novel area of work. Also, a
new and much-needed neurosurgical tool video dataset is
introduced. The dataset consists of four major neurosurgi-
cal tools—Suction, Cusa, Bipolar Forceps, and Dissecting
Forceps. This comprehensive dataset was used to train and
test the tool detection model. The proposed detection model
achieved a high 93.2% mean average precision on the
test dataset of images. Extending further, frame-level tool
detection was performed on the test videos. Bounding box
matching and interpolation techniques [24] were allied to
significantly boost detection performance. Post detection,
the tools were characterized in three ways that are known
to effectively indicate surgical skill—On-off heatmaps that
show tool activity and no-activity, total tool usage time, and
tool motion trajectory.

II. DATASET

Few publicly available datasets of surgical tools have
been used for tool presence detection in the past. These
include the m2cai16-tool dataset [18] which was released as
part of the M2CAI Tool Presence Detection Challenge, and
the Cholec80 dataset [18]. The datasets contain videos of
cholecystectomy and laparoscopic surgeries and are labeled
with binary annotations to indicate tool presence. A dataset
of retina laparoscopic videos available at [25], contains
only one tool for the retina procedures and 1000 images

from a single video containing two tools. A dataset of
minimally invasive surgery [16] consisting of approximately
100 images taken from 6 videos has been used to detect
and localize instruments. A neurosurgical tools dataset which
contains 2476 frames was introduced and evaluated for tool
detection and tool region segmentation [26]. Many of the
above-mentioned datasets lack the quantity and diversity
that is required for building robust automated tool detection
systems. Moreover, very few datasets exist for neurosurgical
instruments in particular. This served as a motivation to
acquire and share our dataset publicly.

TABLE I: Number of train and test instances of each tool.
The bounding box size is computed with respect to the image
size

Number of instances Bounding box size
Tool Train Test Total avg min max

Suction 3807 949 4756 0.136 0.634 0.001
Cusa 2307 408 2715 0.105 0.593 0.005

Bipolar. F 56 184 240 0.239 0.545 0.019
Dissecting. F 464 111 575 0.188 0.634 0.0221

All 6634 1652 8286 0.132 0.634 0.001

Our dataset consists of 5641 annotated frames, at a reso-
lution of 640x480, extracted at 1 frame per second (FPS)
from 32 neurosurgical videos. The data was collected in
accordance with the Helsinki Declaration of 1975, as re-
vised in 2000. Every tool in an image is annotated by a
bounding box and the tool category. The annotation was
performed under the supervision of an experienced neuro-
surgeon. Presently, the dataset consists of four major tools
used in neurosurgery—Suction, Cusa, Bipolar Forceps, and
Dissecting Forceps. The dataset was split into 22 videos
for training and 10 videos for testing. The split was made
while ensuring independence between the training and testing
videos. The distribution of annotated instances of each tool
in the dataset for the training and testing phases is shown in
Table I. Sample images from the dataset are shown in the
Figure 1.
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III. APPROACH

A. Neurosurgical Tool Detection

The localization of surgical tools is an object detection
task, i.e., spatially detect the presence of every tool in an
image as well as identify the kind of tool being used. Deep
learning-based techniques have proved to be very successful
for the detection of objects in images as well as videos. The
R-CNN [27], Fast-RCNN [28], Faster-RCNN [29], YOLO
[22], and SSD [30] are examples of well known object
detection networks. The YOLO object detection algorithm
was chosen for this work, primarily due to its prominent
detection accuracy, better inference speed, and less training
time over other algorithms.

1) The Object Detection Network: The YOLOv5 imple-
mentation by Ultralytics [23] was used to build a YOLOv5
network and fine-tune the same for the surgical tool detection
application. Inherently, the YOLOv5 network is built on
top of the YOLOv4 network which incorporates a “Bag of
Freebies” [31] and “Bag of Specials” that can substantially
improve the robustness of detection [32]. The network uses
the YOLOv5 CNN-based backbone to extract visual features
that are fed to the YOLO detection layers. Extensive data
augmentation is applied during the training phase to prevent
over-fitting and improve generalization [33]. Random scal-
ing, rotations, x-flips, and y-flips were applied to incorporate
variations in tool pose, tool orientation and microscope focus.
Photometric distortions were applied by adjustments in hue,
saturation, and brightness. The other techniques used were
mix-up [34] in which objects were cropped out and pasted
in random backgrounds and mosaic augmentation [32] that
mixes four training images into one. The mosaic augmenta-
tion generates a mixed form of different contexts and enables
the model to detect objects out of their normal setting.

Transfer learning was applied to train the network. Trans-
fer learning has shown to improve localization results on
surgical tool detection tasks as stated in [35]. Hence, the
weights of the network pre-trained on the COCO dataset [36]
were initialized for the training process. The network was
trained and fine-tuned for 150 epochs. The Stochastic Gradi-
ent Descent with momentum and warm restarts algorithm
[37] was used as the optimizer with a cosine annealing
scheduler [38] to decay the learning rate.

2) Bounding Box Matching and Interpolation: Frame-
wise tool detection in videos is prone to errors caused by mo-

tion blur, occlusions, etc. leading to missed or false detection.
Thus, a post-processing method is required that improves
the detection performance of frame-wise tool detection. The
Tubulet-level Bbox linking method proposed by Belhassen
et al. [24] was used to design a robust post-processing
detection step. The method involves minimal distance box
matching across video frames to form tubulets and a se-
quential matching of tubulets from the start to the end frame
within a specific time window. This helps to infer missed
detections and correct false detections in intermediate frames.
The time window was configured to 1s, keeping in mind that
neurosurgeons switch tools in approximately 2s on average.
A bounding box at t = i is defined by the Equation 1,
where xi, yi are the coordinates of the center of the bounding
box and wi, hi are its width and height respectively. The
bounding boxes for the newly inferred detections at a given
time tj are estimated by linear interpolation [39] as described
by Equation 2.

bi = [xi, yi, wi, hi] (1)

bj =
ti+1 − tj
ti+1−ti

bi +
tj − ti
ti+1 − ti

bi+1 (2)

B. Tool Characterization

The characterization of tools was conducted in the follow-
ing manner -

• Tool on-off time: The on-off time heatmap for each
tool shows the different tools that were used in various
parts of the surgery. It also represents the frequency and
duration of a tool or a combination of tools that were
used during the procedure. Such statistics are useful
not only for understanding the different phases of a
surgery [9], but also for detecting unwarranted errors
made by a surgeon (e.g. using incorrect tools). The
on-off heatmap also offers quantification of no-activity
periods and its frequency in a surgical procedure. This
can be used to directly characterize a surgeon’s skill
given the kind of surgical procedure being performed.
For instance, a less skilled surgeon is likely to have a
greater frequency of no-activity during a surgery [40].

• Tool usage time: The total usage time of each tool in
the surgical procedure is also an indicator of skill since
the usage time varies as a surgeon acquires knowledge
of the tool’s handling and orientation. For instance, as

(a) (b) (c) (d)

Fig. 2: Tool detection results showing the confidence of detection alongside the tool label.
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learnt from [40], the Cusa’s tool usage was observed
to increase with experience for tumor decompression
procedures whereas, the Suction’s usage was observed
to decrease.

• Tool motion trajectory: The centroids of the detected
tools were tracked throughout the video segments that
had a constant surgical field of view acquired from a
stationary microscope. Tracking the motion of tools can
aid in differentiating an expert surgeon from a novice
in terms of dexterity [10].

IV. RESULTS AND OBSERVATIONS

A. Tool Detection

The detection model was evaluated by performing in-
ference on the test image-dataset that was mentioned in
Table I. Few sample frames of the detection results are
shown in Figure 2. The model was able to detect tools with
high confidence scores, and also detect tools in different
orientations. For example, the Suction tool appearing in
different orientations is successfully detected by the model
as shown in Figures 2a, 2b, 2c and 2d. In addition, the
developed detection model is insensitive to slight motion blur
caused by the movement of the tool by the surgeon. Overall
the developed model generalizes adequately and detects tools
with varying orientations, scales, blurriness and tools that are
partially visible in the frame.

The tool detector is evaluated using the mean average
precision (map) metric. A prediction that has an Intersection
over Union (IoU) greater than 0.5 with the ground truth is
considered a correct detection. The performance evaluation

TABLE II: Results of tool detection on image test dataset

Tool Precision Recall map@0.5IoU
Suction 0.896 0.93 0.96

Cusa 0.777 0.966 0.958
Bipolar Forceps 0.877 0.918 0.931

Dissecting Forceps 0.426 0.928 0.883
Total 0.744 0.936 0.932

for each tool is shown in Table II. The model detects
Suction and Cusa tool the best, followed by the Bipolar
and Dissecting forceps. The map of the Dissecting and
Bipolar Forceps were expected to be lower compared to the
Suction and the Cusa. This is attributed to lesser training
data available for these tools when compared to the other
two since Dissecting and Bipolar Forceps are less frequently
used in surgeries.

B. Frame-Wise Video Tool Detection and Characterization

Tool detection was performed on the test videos at 25fps.
Bounding box matching and interpolation across frames
was performed as mentioned in Section III-A.2, and each
tool was characterized as discussed in the Section III-B.
Figure 3 presents the results on a test video during which
the surgeon used all four tools in a span of 300 seconds. It
was observed that the post-processing interpolation technique
significantly improves the detection of tools throughout the
video, as shown in the on-off heatmap in Figures 3a, and 3b,
when compared to the ground truth characterization that
is shown in Figure 3c. The dark regions in the heatmap

(a) On-off heatmap before post-processing (b) On-off heatmap after post-processing (c) Ground truth on-off heatmap

(d) Usage time before post-processing (e) Usage time after post-processing (f) Tool trajectories

Fig. 3: Tool characterization on a test video
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(a) On-off heatmap after post-processing

(b) Computed usage time after post-
processing

(c) Tool trajectories

Fig. 4: Tool characterization on a test video

represent tool usage. The characterization post interpolation
is more accurate. Notice that the intermediate frames which
are undetected in Figure 3a are successfully detected after
interpolation in Figure 3b. Similar improvement is also
observed in the tool usage time, where the predicted usage
time for each tool is much more accurate post applying the
interpolation technique as shown in Figure 3e.

Figure 3f shows the motion trajectory of each tool which is
generated by tracking the centroid of the predicted bounding
box. The X and Y axis are in pixel coordinates, and the
Z axis represents time. The motion trajectory, as expected,
complies with the heat-map in Figure 3b. The surgeon first
uses the Suction and Cusa for a short duration followed by
the Suction and Dissecting Forceps. Then, the surgeon uses
the Bipolar Forceps and the Suction. The motion variations
that are visible in the trajectory are an important indicator of
the surgeon’s dexterity; experienced surgeons are known to

execute more focused movements, leading to better motion
economy [8]. Another test video involving the usage of only
two tools—Suction and Dissecting Forceps is characterized
by tool usage, tool on-off time and tool trajectories as shown
in the Figure 4. The predicted tool usage times for Suction
and Dissecting forceps are in close agreement to the ground
truth values as shown in Figure 4b. Figure 4a, Figure 4b and
Figure 4c are the outcomes of characterizing the tools used
by the surgeon.

CONCLUSION

A novel neurosurgical tool detection and characterization
system based on the YOLOv5 algorithm was developed for
detecting and localizing four primary microsurgical tools
commonly employed in neurosurgery. The model was trained
on an original custom dataset of intra-operative neurosurgical
videos. The dataset offered a rich source of tool information
which was effectively used to characterize the surgeon’s tool
usage. The characterization was based on three parameters:
Tool on-off time, tool usage time and tool trajectory. Various
data augmentation strategies, transfer learning, and tubulet-
level bounding box linking methods were incorporated to
design a robust detection and localization model. The model
showcased a 93.2% map for all the four tools used, with
a high accuracy reported for the Suction and Cusa tools
when compared to the Dissection and Bipolar Forceps. Ad-
ditionally, tools in different orientations, scales, with slight
motion blur, and that are partially visible in frames were
also detected successfully. The frame-wise tool detection and
characterization were consistent with the reported ground
truth. The development of a robust neurosurgical tool de-
tection and characterization model using videos is a novel
and significant step towards automating and characterizing
neurosurgery in terms of the outcome of the surgery and
assessing surgical skills.
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