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Abstract— Antenatal fetal health monitoring primarily de-
pends on the signal analysis of abdominal or transabdom-
inal electrocardiogram (ECG) recordings. The noninvasive
approach for obtaining fetal heart rate (HR) reduces risks of
potential infections and is convenient for the expectant mother.
However, in addition to strong maternal ECG presence, unde-
sirable signals due to body motion activity, muscle contractions,
and certain bio-electric potentials degrade the diagnostic quality
of obtained fetal ECG from abdominal ECG recordings. In
this paper, we address this problem by proposing an improved
framework for estimating fetal HR from non-invasively ac-
quired abdominal ECG recordings. Since the most significant
contamination is due to maternal ECG, in the proposed frame-
work, we rely on neural network autoencoder for reconstructing
maternal ECG. The autoencoder endeavors to establish the non-
linear mapping between abdominal ECG and maternal ECG
thus preserving inherent fetal ECG artifacts. The framework
is supplemented with an existing blind-source separation (BSS)
algorithm for post-treatment of residual signals obtained after
subtracting reconstructed maternal ECG from abdominal ECG.
Furthermore, experimental assessments on clinically-acquired
subjects’ recordings advocate the effectiveness of the proposed
framework in comparison with conventional techniques for
maternal ECG removal.

I. INTRODUCTION

The fetal electrocardiogram (ECG) reveals useful infor-
mation about the physiological condition of a fetus during
pregnancy and labor [1]. The abdominal ECG, which is
acquired non-invasively, contains strong contamination of
maternal ECG signal and other undesirable signals due to
body motion and muscle activity, thus yielding a low signal-
to-noise ratio (SNR) for fetal ECG [2]. In this sense, the com-
plete elimination of maternal ECG is of utmost significance
and remains a daunting signal processing task. Since the
abdominal ECG is most significantly corrupted by the strong
presence of maternal ECG [3], a reliable cancellation of the
maternal ECG morphology is necessary for determining fetal
HR.

In the literature, several different techniques and frame-
works have been proposed for maternal ECG removal. These
methods can mainly be categorized as adaptive filtering,
blind source separation (BSS), and template subtraction (TS).
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Fig. 1. The abdominal, maternal and fetal ECG signals. Owing to their
stochastic nature, the fetal peaks may coincide with the maternal peaks
which can influence the correct identification of fetal heartbeat in abdominal
ECG recordings.

[4]-[11]. The BSS methods have been discussed extensively
in [7]. The objective of BSS techniques is to decompose the
composite signal into its constituents: fetal ECG, maternal
ECG, and interference [8]. However, these methods are
limited by the assumption that the mixture system is linearly
contaminated [9]. The adaptive filtering methods aim to
minimize the error between noisy ECG and a reference
ECG recording. Although these methods have proven to be
effective in eliminating maternal ECG contamination, they
depend on structurally similar reference ECG that imposes
computational burden [10]. The TS methods are superior in
the sense that they rely solely on a single-channel abdominal
recording [11]. It is worth noting that, during artifact reduc-
tion, the TS methods may also deteriorate the fetal ECG
artifacts if the fetal and maternal heartbeats coincide as seen
in Fig. 1. This can significantly affect the extraction of fetal
HR.

Previously, we studied the reconstruction of maternal ECG
from abdominal ECG using autoencoder in [12]. Building
upon that, in this paper, we propose an improved frame-
work for fetal HR detection. Our framework comprises
three main modules: preprocessing raw abdominal signals,
reconstructing and canceling the estimated maternal ECG,
and estimating fetal HR. Specifically, we focus on maternal
ECG cancellation by leveraging neural-network autoencoder,
aiming to learn the compressed encoding of abdominal ECG
and using appropriate features for decoding, thus reconstruct-
ing maternal ECG morphology. The autoencoder endeav-
ors to establish the non-linear mapping between abdominal
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ECG and maternal ECG thus preserving inherent fetal ECG
artifacts. The framework is supplemented with an existing
BSS algorithm for post-treatment of residual signals. It is
shown that autoencoder-based maternal ECG cancellation
significantly improves fetal HR detection.

The rest of the paper is organized as follows. The sug-
gested framework is presented in section II, experiments and
results are discussed in section III and finally, section IV
concludes this paper.

II. THE PROPOSED FRAMEWORK FOR FETAL HEART
RATE DETECTION

A. Preprocessing

The first module of the proposed framework is preprocess-
ing of abdominal ECG data. This is mainly done to subdue
saturated and invalid information in the signals, primarily
due to the noisy outputs of the analog-to-digital converters
in sensors. Centering and amplitude normalization is per-
formed. The mean of the signal is subtracted to eliminate
the sharp voltage jumps. A bandpass filter (BPF) with a
passband of [2.0, 46] Hz is then employed to minimize
the fundamental noise components. The filter is designed by
cascading a low-pass and a high-pass filter between 2 and 46
Hz, using a linear-phase Kaiser window. The preprocessing
treatment denoises the recordings to a considerable extent
while also preserving the fetal ECG artifacts.

B. Canceling Maternal ECG

The maternal R-peak locations are first determined by
the well-known Pan-Tompkins algorithm [13] which esti-
mates the R-peak through a series of filters and adaptive
thresholds. We denote the preprocessed abdominal ECG of
a subject as xA = [xA

1 (t),x
A
2 (t), . . . ,x

A
N(t)] for t = 1,2, . . . ,T ,

where N corresponds to the number of electrode channels.
Similarly, the preprocessed maternal ECG is denoted as
xM = [xM

1 (t),xM
2 (t), . . . ,xM

N (t)] for t = 1,2, . . . ,T . Both the
recordings are then segmented by a time window that is
centered around the estimated maternal R-peak,

CA
i (t) = xA

i (t) · rect
(

t− τi

D

)
, (1)

where CA
i (t) is the ith extracted abdominal cycle, xA

i (t) is the
ith preprocessed abdominal ECG recording, τi is the location
of the estimated maternal R-peak, and D is the set duration
which ensures that the fetal ECG artifacts are preserved and
that the extracted segments are non-overlapping cycles. After
performing the same procedure on xM , we obtain CA =
[cA

1 ,c
A
2 , . . . ,c

A
n ] and CM = [cM

1 ,cM
2 , . . . ,cM

n ] where ci ∈ RD

and CA,CM correspond to the segmented cycles of xA and
xM , respectively.

We design an encoder-decoder network that establishes the
non-linear mapping between the abdominal ECG artifacts
and the maternal ECG artifacts. Specifically, the encoder
takes the input CA and maps it to a hidden representation
C ′ through a deterministic mapping function C ′= fθ (C

A)=
φ(WCA+b) which is parameterized by θ = {W ,b}. Here,
φ is an activation function, W is a weight matrix, and b is
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Fig. 2. The flowchart of the proposed framework: (i) Preprocessing, (ii)
Canceling Maternal ECG, and (iii) Extracting Fetal Heart Rate.

a bias vector. The extracted feature set by the autoencoder
is given by C ′. The latent representation C ′ is then mapped
back to a reconstructed vector CM through the decoder. The
deterministic mapping of the decoder can be formulated as
CM = gθ ′(C

′) = φ(W ′C ′+b′) which is parameterized by
θ ′ = {W ′,b′}. By optimizing the parameters of the autoen-
coder, the reconstruction loss L(cA

i ,c
M
i ) can be minimized,

θ
∗,θ ′∗ = argmin

θ ,θ ′

1
n

n

∑
i=1

L(cA
i ,c

M
i ), (2)

where n is the number of training samples, cA
i is the ith

input data from the training samples and L is a loss function
(e.g. mean-squared error). The autoencoder reconstructs the
maternal ECG segmented cycles corresponding to the ab-
dominal ECG segmented cycles. The reconstructed maternal
ECG cycles are denoted as ĉM = [ĉM

1 , ĉM
2 , . . . , ĉM

n ] which are
rejoined to obtain x̂M , the maternal ECG morphology. The
residual signal xR can thus be extracted as follows,

xR = xA− x̂M. (3)

The reconstructed maternal ECG is directly subtracted
from the test subjects’ composite recordings.

C. Extracting Fetal Heart Rate
In the third module, the joint approximation diagonaliza-

tion of eigen-matrices (JADE) algorithm [14] is employed
to extract the fetal ECG signal. The basic premise of the
BSS method is to separate a mixed observed signal into its
components. In this case, the mixture signal are the remnants
obtained after subtracting reconstructed maternal ECG in
previous step. So the observed data can be represented by
xR = [xR

1 (t),x
R
2 (t), . . . ,x

R
N(t)] for t = 1,2, . . . ,T , assumed to be

linearly contaminated with the source xS due to the mixing
matrix A. The mixing activity can be depicted by,

xR =AxS, (4)

where xR is the residual signal obtained after subtraction,
xS is the source signal, and A is the unknown mixing
matrix of interest. With the output of the BSS algorithm,
the peak-detection process can be easily carried out using
the algorithm in [9].

III. EXPERIMENTS AND RESULTS

The implementation steps for autoencoder-based maternal
ECG removal and fetal HR estimation are detailed here along
with the performance evaluation.
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A. Data Description and Measurement

The experiments are conducted on clinically-acquired 12-
lead ECG data that are recordings of duration 60 s each. This
data was obtained from Atom Medical Corporation, Japan as
a result of laboratory collaboration.

The abdominal ECG data were recorded by a non-invasive
sensor at a sampling frequency of 1000 Hz. Here, the 11
electrodes correspond to various spatially oriented abdominal
ECG recordings which were placed on the expectant moth-
ers’ abdomen and 1 electrode corresponds to maternal ECG.
Two abdominal channels were selected for maternal ECG
reconstruction. Furthermore, reference annotations were also
acquired from Atom Medical Corporation and associated
medical experts, in terms of the fetal HR and the fetal
RR interval. These annotations are used for numerically
assessing the performance of the proposed framework for
fetal HR estimation. To evaluate the performance of the
proposed framework for fetal HR estimation, we consider
the root-mean-squared error (RMSE) between the estimated
fetal RR interval, F̂RRI, and the reference FRRI given by

RMSE(FRRI, F̂RRI) =

√
1
K

K

∑
i=1

∥∥∥F̂RRIi−FRRIi

∥∥∥2

2
. (5)

In addition, the averaged absolute error (AAE) compares
the estimated fetal heart rate, F̂HR, with the reference FHR,
given by

AAE(FHR, F̂HR) =
1
K

K

∑
i=1

∥∥∥∥ 60 · fs

F̂RRIi
− 60 · fs

FRRIi

∥∥∥∥ , (6)

where fs is the sampling frequency and K corresponds to the
total number of fetal RR intervals.

B. Experimental Results and Discussion

After preprocessing raw abdominal ECG recordings of the
subjects, the location of the R peaks is determined using the
Pan-Tompkins algorithm [13]. An example of preprocessing
is shown in Fig. 3 (a). For each estimated maternal R
peak, a vector of size 700 is obtained. This corresponds
to a segmented cycle centered around the R peak with a
duration of 0.25 s to the left and 0.45 s to the right. The
set of vectors corresponding to all the R peaks forms the
input to the autoencoder trained to reconstruct the maternal
ECG morphology using the abdominal ECG cycles as input.
Consecutive extracted cycles of the subjects’ abdominal ECG
are fed to the trained autoencoder. The network outputs
the corresponding reconstructed maternal ECG cycles. The
reconstructed cycles are rejoined to form the reconstructed
maternal ECG morphology. This is subtracted directly from
the abdominal ECG to obtain the residual signals.

The residual signals are still expected to contain remnants
of high-frequency noise components, which can potentially
affect the estimation and correct identification of fetal ECG.
This necessitates the use of a BSS algorithm on the residual
signals. In this paper, we employ the JADE algorithm [14] for
processing the residual signals. Due to the BSS algorithm, the
constituent signals exhibit enhanced and more pronounced
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(a) The raw and preprocessed abdominal ECG.
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(b) The reconstructed maternal ECG along with the reference.
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(c) The output of BSS module indicating correctly detected fetal peaks.

Fig. 3. Examples of the proposed method’s stages for subject A.

TABLE I
THE RMSE FOR AMPLITUDE BETWEEN REFERENCE AND

RECONSTRUCTED MATERNAL ECG. RESULTS ARE AVERAGED OVER ALL

ABDOMINAL ECG CHANNELS.

RMSE [mV]

Subject A Subject B Subject C Subject D Subject E

0.0036 0.0039 0.0038 0.0041 0.0046

peaks thus aiding our peak detection process for fetal HR
estimation.

1) Experiment 1: In the first experiment, we intend to
assess the maternal ECG reconstructed from abdominal ECG
using the trained autoencoder. The idea is to reconstruct the
maternal ECG in lieu of performing artifact reduction on
AECG itself so that fetal HR artifacts can be fully preserved.
An autoencoder is designed which consists of 7 fully-
connected layers. In the encoder, the input layer is succeeded
by 3 hidden layers of node size 128, 64, and 32. Here, 32 is
the encoding dimension, defined as the feature number [15].
The decoder is designed to be inversely symmetric to the
encoder. Furthermore, we have employed exponential linear
units (ELU) and tanh1 as activation functions for hidden
layers and the output layer, respectively [16], [17].

We compare the reconstructed maternal ECG with the
reference maternal ECG for each subject. A visual evaluation
of reconstructed maternal ECG along with the reference is

1The hyperbolic tangent activation function is represented by tanh(x) =
(ex− e−x)/(ex + e−x).
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TABLE II
THE PERFORMANCE OF THE PROPOSED FRAMEWORK (SHOWN IN BOLD) WITH REGARDS TO THE ESTIMATED FETAL RR INTERVAL AND FETAL HR IN

TERMS OF RMSE [MS] AND AAE [BPM] RESPECTIVELY.

RMSE [ms] AAE [bpm]

TS [4] TSM [5] TSPCA [6] Proposed TS TSM TSPCA Proposed

Subject A 16.273 12.661 5.1962 4.2470 1.3563 0.9527 0.4444 0.4168
Subject B 22.990 22.946 23.289 13.631 2.8626 2.9997 3.1327 1.8863
Subject C 7.2042 7.4583 7.6265 0.9451 0.5950 0.6090 0.5859 0.1861
Subject D 14.173 14.125 14.349 14.094 1.0495 0.9948 0.9675 0.8683
Subject E 5.6465 5.8810 5.9194 0.9722 0.5560 0.5786 0.5606 0.1969

shown in Fig. 3 (b) for subject A. Furthermore, the RMSE
to measure amplitude variation between reconstructed and
reference maternal ECG is also calculated for all the subjects,
given in TABLE I. It is evident that the autoencoder is able
to reconstruct the maternal ECG from the abdominal ECG
thus allowing for maternal ECG elimination.

2) Experiment 2: In the second experiment, the fetal
HR is calculated to evaluate the performance of the entire
framework. We also assess the fetal RR interval. Since the
proposed method focuses on autoencoder-based maternal
ECG removal, we validate the results by comparison to the
TS methods. Specifically, the proposed method is compared
to the following: TS [4] whereby a maternal ECG tem-
plate cycle is built and updated while canceling previous
cycles, TSM [5] whereby the maternal ECG template is
scaled with a constant to reduce mismatch between the
template and individual maternal ECG cycles, and TSPCA
[6] whereby singular value decomposition (SVD) is used
to obtain principal components (PCs) and the components
constituting for maternal ECG can be subtracted. For an
equitable comparison, the second module in the proposed
framework is replaced with the TS algorithms while all the
other system parameters are kept constant.

The RMSE results for the fetal RR interval and the AAE
results for the fetal HR are given in TABLE II. From the
table, it is evident that the proposed method yields better
results than the conventional methods. The performance can
be attributed to the fact that the autoencoder reconstructs
the maternal ECG quite accurately, as shown in TABLE I.
Consequently, the reconstructed maternal ECG subtraction
preserves the fetal HR artifacts in the abdominal recordings.
Furthermore, the use of the BSS algorithm further enhances
fetal HR detection in the proposed framework.

IV. CONCLUSION

In this paper, we introduced an improved framework for
fetal HR detection. Our framework incorporates the use of
neural-network autoencoder for maternal ECG reconstruction
supplemented with an existing BSS algorithm for enhanced
fetal HR detection. Furthermore, it is seen that autoencoder-
based maternal ECG reconstruction and subsequent cancella-
tion benefits the extraction of fetal HR which is evident from
better performance achieved during numerical assessments
on the subjects’ recordings. With the improved fetal HR
accuracy, the suggested framework is expected to enhance

clinical applications of fetal ECG and assist clinicians in
timely diagnosing fetal heart diseases.
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