
Conditional Generative Adversarial Networks for low-dose CT image
denoising aiming at preservation of critical image content

Koen C. Kusters1, Luis A. Zavala-Mondragón1, Javier Oliván Bescós2, Peter Rongen2,
Peter H.N. de With1, Fons van der Sommen1

Abstract— X-ray Computed Tomography (CT) is an imaging
modality where patients are exposed to potentially harmful
ionizing radiation. To limit patient risk, reduced-dose protocols
are desirable, which inherently lead to an increased noise level
in the reconstructed CT scans. Consequently, noise reduction
algorithms are indispensable in the reconstruction processing
chain. In this paper, we propose to leverage a conditional
Generative Adversarial Networks (cGAN) model, to translate
CT images from low-to-routine dose. However, when aiming
to produce realistic images, such generative models may alter
critical image content. Therefore, we propose to employ a
frequency-based separation of the input prior to applying the
cGAN model, in order to limit the cGAN to high-frequency
bands, while leaving low-frequency bands untouched. The
results of the proposed method are compared to a state-of-the-
art model within the cGAN model as well as in a single-network
setting. The proposed method generates visually superior results
compared to the single-network model and the cGAN model in
terms of quality of texture and preservation of fine structural
details. It also appeared that the PSNR, SSIM and TV metrics
are less important than a careful visual evaluation of the results.
The obtained results demonstrate the relevance of defining and
separating the input image into desired and undesired content,
rather than blindly denoising entire images. This study shows
promising results for further investigation of generative models
towards finding a reliable deep learning-based noise reduction
algorithm for low-dose CT acquisition.

I. INTRODUCTION

X-ray Computed Tomography (CT) is an imaging modal-
ity routinely used in clinical practice in which patients are
exposed to potentially harmful X-ray radiation [1]. With
the aim of decreasing the radiation exposure, reduced-dose
protocols are desirable. However, the reduced-dose images
are corrupted by noise that is hard to model due to its
diverse sources, as well as the CT image reconstruction
process. The presence of noise may impair the visualization
of clinically relevant features by clinicians. To make the
application of reduced-dose protocols feasible, the inclusion
of noise reduction algorithms within the processing chains
is required.

There are diverse approaches for dealing with noise in
CT. For example, the inclusion of noise reduction stages
after reconstruction, such as the total-variation regularization
approach proposed by Tian et al. [2]. Popular alternatives
are to perform denoising through iterative reconstruction
techniques [3], [4], [5], [6]. However, the sequential nature of
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these these approaches increases their execution time, which
makes them less attractive for clinical applications.

More recently, deep learning techniques such as Genera-
tive Adversarial Networks (GAN) [7] have shown promising
results in noise reduction for CT. Yang et al. [8] and
Wolterink et al. [9] exploited the GAN framework in context
of low-to-routine dose CT emulation. In the sequel of this
paper we will denote low-to-routine dose as ‘low’-dose.
The results have shown that GAN frameworks excel in
image-translation tasks and produce images that are both
well-denoised and realistically looking. However, despite
the visually appealing results achieved by such generative
models, a point of concern is that they may alter critical
image content [8], which can impede correct diagnosis by
clinicians.

Several well-established GAN frameworks exist that are
suitable for the image translation tasks, such as Cycle-
Consistent Adversarial Networks (CycleGAN) [10], Wasser-
stein Generative Adversarial Networks (WGAN) [11] or
conditional Generative Adversarial Networks (cGAN) [12].
Each of these frameworks has specific strengths. Cycle-GAN
enables a consistent cycle of translation between domains,
which makes it feasible for unpaired data applications. Fur-
thermore, WGANs use a specialized loss term that improves
training stability. Finally, the cGAN framework, proposed
by Isola et al. [12], addresses the case of paired image-
to-image translation and achieves excellent results. Given
the nature of our dataset, namely paired low- and routine-
dose CT images, and the success of the cGAN architecture,
we have chosen to explore the cGAN framework for ‘low’-
dose image translation. cGAN frameworks are composed by
two Convolutional Neural Networks (CNNs), the generator
and discriminator respectively. The generator is in charge
of translating an image from input domain to the target
domain, while the discriminator has the task to distinguish
whether the generated image is a ‘real’ or ‘fake’ image in
the target domain. Adversarial feedback of the discriminator
forces the generator to produce images that resemble the
‘real’ examples better.

The main contribution of this paper is the exploration of
a generator architecture averting alteration of critical image
content, based on the popular Residual Encoder-Decoder
(RED) CNN proposed by Chen et al. [13], which is designed
for noise reduction in CT. To improve the preservation of
image content, we propose to decompose the signal with
an undecimated Laplacian Pyramid with one decomposition
level to separate high-frequency noise from low-frequency

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 2682



image content in CT data. Afterwards, we apply the RED-
CNN to remove noise exclusively on the high-frequency
band components, as we hypothesize that a large part of the
noise is contained in this frequency band. As the reader may
notice, we do not process the low-frequency band, which
typically contains most of the signal energy. This approach
significantly limits the modification of critical image con-
tent contained in the low-frequency band. Hereafter, this
approach is referred to as Laplacian RED-CNN.

Two main experiments are performed to prove that Lapla-
cian RED-CNN manages to preserve details better than
the standard RED in noise reduction applications within a
cGAN framework. First, for reference, we train RED-CNN
to perform noise reduction without cGAN regularization.
In the second experiment, we train RED and Laplacian
RED-CNN with adversarial feedback provided by a Patch-
GAN CNN [12]. The results show that our approach better
preserves the content of the image, which is important in
the medical context. To prove our claims, we present and
discuss numerical metric values evaluated on full-CT slices,
as well as on patches of interest. Furthermore, a discussion
on visual results of generated images and suggestions for
future research are provided.

The remainder of the paper is organized as follows.
Section II gives an overview of the methodology, Section
III elaborates on the experimental results with an extensive
discussion. The conclusions are presented in Section IV.

II. METHODS

A. CT Data

For our experiments, we use the brain scans provided with
the “Low Dose CT Image and Projection Data” [14], [15]
from The Cancer Imaging Archive (TCIA) [16]. This dataset
consists of 50 head scans acquired from 50 different patients,
providing a total of 1,782 routine-dose (NDCT) and low-dose
(LDCT) slices. In this dataset, LDCT scans were derived
from the NDCT ones, by adding synthetic noise to simulate
acquisitions with 25% of routine-dose. Each slice is an image
with a size of 1× 512× 512 pixels. The available data was
randomly divided into training, validation and test sets on a
per-patient basis. A split of 80%–20% was taken for training
and test sets, respectively, while the validation set was taken
as 10% of the training set. This resulted in training, test
and validation sets consisting of 1,291, 351 and 140 LDCT-
NDCT image pairs, respectively.

B. Data pre-processing

In CT imaging, pixel intensities of the images are ex-
pressed in Hounsfield Units (HU), which cover a wide
range of tissues. Since we are interested in improving the
visualization of brain tissue, we constrain the HU window
to the range [-9, +136] HU, which is close to the values
observed by clinicians. After this operation, we normalized
the pixel values to the range [0,1]. Furthermore, since the
training set was relatively small, data augmentation was
utilized to increase the size of the set. The augmentation
operations employed for this purpose were rotation of 90◦,

180◦ and 270◦, horizontal flipping with 0◦ and 90◦ rota-
tion and vertical flipping with 0◦ and 90◦ rotation. These
augmentation transformations increased the training set size
with a factor of 8. Thus, after data augmentation the training
set consisted of 10,328 LDCT-NDCT image pairs.

C. Network Architectures

1) Generator: RED-CNN proposed by Chen et al. [13]
serves as the basis for the generator architecture in the cGAN
framework1. This 10-layer network employs an encoder-
decoder structure with 3 residual skip connections. The
architecture comprises of 5 blocks with convolutional layers
for the encoder and 5 blocks with transposed convolutional
layers for the decoder. All (transposed) convolutional layers
employ 96 filters of size 5×5 with stride 1 over non-zero
padded input, except for the last transposed convolutional
layer with a single filter. The residual connections from nodes
in the encoder are added to some feature maps in the decoder.
The input and output size of the RED-CNN generator is
BS × 1× 512× 512, where BS represents the batch size.

In our experience, the use of CNNs such as RED, in
a conditional GAN framework may lead to alteration of
the image content with the objective to produce clear and
realistically looking images. We hypothesize that the reason
for these alterations is given by the fact that conventional
encoding-decoding CNNs, attempt to learn simultaneously
filtering and reconstruction of the signal, which may lead
to alterations of the signal. To overcome this limitation,
we propose to separate the spectrum of the signal in a
low- and high-frequency band by applying an undecimated
Laplacian Pyramid with one decomposition level. This sep-
aration forces RED to focus the processing exclusively on
the high-frequency band, where generally the largest fraction
of the energy is contained with noise, while leaving the
low-frequency band unchanged. We call this approach the
Laplacian RED-CNN.

The implementation of Laplacian RED-CNN is as follows.
The first layer is a 9×9 Gaussian low-pass filter with σ = 3,
which extracts low-frequency information from the input
image. The next step of the Laplacian pyramid is to subtract
the low-frequency image version from the original input.
This yields high-frequency information, consisting mostly of
noise, which will serve as input to the RED-CNN.

Due to the subtraction of low-frequency content, feature
maps inside the architecture will be zero-mean. To avoid
loss of information embedded in negative activations, the
final activation layer is replaced by an hyperbolic tangent
activation. The final operation in the modified generator is
to add the low-frequency content back again to the processed
high-frequency content. The structure of both RED-CNN as
well as the Laplacian RED-CNN generator are presented in
Fig. 1.

2) Discriminator: A multi-scale PatchGAN discriminator
architecture, based on the paper of Isola et al. [12], was
adopted for this research. This discriminator architecture

1Based on https://github.com/SSinyu/RED-CNN/blob/master/networks.py
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Fig. 1. Structure of the generator architectures. (a) RED-CNN generator. (b) Laplacian RED-CNN generator: RED-CNN generator adapted for image
content preservation by an undecimated Laplacian Pyramid with one decomposition level and hyperbolic tangent activation.

restricts attention to structures in local image patches. The
output size of this discriminator is BS× 1× 32× 32, where
BS stands for batch size. This implies that each 16 × 16
patch is classified as either ‘real’ or ‘fake’. The architecture
of the discriminator is defined by:

C64− CN128− CN256− CN512− CS1, (1)

where Ck indicates a convolutional layer followed by a leaky
Rectified Linear Unit (ReLU), CNk denotes a convolution
block followed by a batch normalization and a leaky ReLU.
Lastly, CSk indicates a convolutional layer followed by a
Sigmoid activation. For the aforementioned building blocks,
the number k indicates the number of filters. Convolutional
layers employ kernels of size 4×4 applied with stride 2 and
padding 1, except for CS1 with a stride of 1. For all leaky
ReLUs, parameter α is set to α = 0.2.

D. Training Implementation

In cGAN frameworks, the generator and discriminator are
trained in an adversarial manner. The discriminator indicates
if the processed LDCT image looks ‘real’ or ‘fake’, thereby
encouraging the generator to improve the texture of the
processed images to better resemble the corresponding ‘real’
NDCT image. In each training iteration, the discriminator is
trained on this task by providing a batch of NDCT-LDCT
pairs and a batch of Processed-LDCT pairs. To this end, the
following loss function is specified:

LD =
1

2
LBCE[D(ILD, IND), 0]

+
1

2
LBCE[D(ILD, G(ILD)), 1],

(2)

where D represents discriminator, G denotes generator, ILD

and IND are the LDCT and NDCT image, respectively.
The first loss term reflects the binary cross-entropy (BCE)

between the discriminator’s output on ‘real’ target NDCT
data and target label 0. The second loss term reflects the
BCE between the discriminator’s output on generated data
and label 1. The generator is responsible for translating noisy
LDCT images to the NDCT target domain, such that the
discriminator is not able to distinguish processed images
from real NDCT images. This process is guided by a loss
function that is specified by:

LG = LBCE[D(ILD, G(ILD)), 0]

+ λ ||G(ILD)− IND||1,
(3)

where λ = 100 is a weighting factor for the L1 loss. The first
loss term reflects the BCE between the discriminator’s output
on generated data and inverted target label, which represents
the adversarial feedback of the discriminator to the generator.
The second loss term indicates the L1 loss between the gen-
erated and NDCT target image. This additional loss forces
the generator to create images that are closely resembling the
NDCT target image in terms of pixel intensity distribution.

The proposed cGAN models were trained for 16 epochs
with a batch size of 4 image pairs. Parameters in both the
generator and discriminator were updated using the Adam
optimizer, with a learning rate of 0.0002, where β1 = 0.5
and β2 = 0.999. Furthermore, a learning rate scheduler was
implemented, which reduced the maximum learning rate by
a factor 0.2 with threshold 0.01 and a patience of 5 epochs,
when the generator loss did not decrease. The proposed
method has been implemented in Python using the PyTorch
framework and experiments were executed on an GeForce
GTX 1080 Ti.

E. Evaluation

For performance evaluation of the generated images as
well as image patches of interest, three different metrics
are employed. As a first metric, Peak Signal-to-Noise ratio
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(PSNR) is utilized. PSNR is expressed in decibels [dB] and
is defined as:

PSNR = 10 log10

(
R2

MSE

)
, (4)

where R is the maximum pixel intensity and MSE is the
mean-squared error between generated image and reference
NDCT target image.

As a complementary metric to the PSNR, we compute
the Structural Similarity Index (SSIM), which indicates the
perceptual difference between two images in terms of struc-
tural changes. The SSIM is computed window-wise between
generated and NDCT target image and yields a value in
the unity interval, where unity means perfect similarity. The
value of SSIM between windows x and y is computed by:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (5)

where µ denotes the mean of the corresponding window, σ
is the variance of the corresponding window and σxy is the
covariance between the windows. Furthermore, c1 = (0.01 ·
L)2 and c2 = (0.03 · L)2 with L being the dynamic range
of pixel values.

As third and last metric, Total Variation (TV) is used. This
metric gives information about the smoothness of images,
which is useful since noisy images typically have a higher
TV than images without noise. The TV for each pixel in an
image is calculated by:

TV(x, y) =

√√√√ +1∑
i=−1

(Ix,y − Ix+i,y)2 + (Ix,y − Ix,y+i)2,

(6)
where Ix,y represents the pixel intensity of pixel (x, y). In
order to obtain a single value for each image, all values
within the resulting 2D matrix are accumulated.

TABLE I
REFERENCE VALUES OF LDCT AND NDCT FOR PATCHES OF INTEREST

AND VALUES OF FULL-CT IMAGES AVERAGED OVER THE TEST SET

LDCT NDCT
PSNR [dB] SSIM [-] TV [-] TV [-]

Patch A 17.0585 0.5252 1,205.10 642.61
Patch B 19.7134 0.7287 293.41 183.10
Patch C 15.4060 0.6322 394.71 224.64
Patch D 17.0426 0.5727 615.25 330.22

Test set 32.6730 0.9354 11,443.87 8,894.50

III. EXPERIMENTAL RESULTS AND DISCUSSION

To demonstrate the improved performance of our ap-
proach, we evaluate cGAN frameworks employing RED-
CNN and Laplacian RED-CNN as generator, as well as
a RED-CNN without adversarial feedback of an auxiliary
CNN. The performances of the methods are measured with
the defined metrics and validated on full-CT images in the
test set as well as on patches of interest. In order to assess
the performance of the methods more precisely, the metrics

are also evaluated on the corresponding LDCT and NDCT
images, to serve as a reference.

These reference values are depicted in Table I, while the
results for the described methods are listed in Table II. The
results from Tables I and II are illustrated in Fig. 2 by
showing the denoised images with highlighted patches of
interest, as well as the corresponding source LDCT and target
NDCT images. As shown in Table II, RED-CNN without
auxiliary CNN yields results that are superior to the results
of the cGAN models, in terms of PSNR and SSIM values.
Furthermore, it is shown that the cGAN framework with
RED-CNN as generator produces results that are the best
in terms of TV, since the values are closest to the reference
TV values of corresponding target NDCT images depicted
in Table I.

During evaluation of the results, we have observed that
the metric values may not always reflect the perceptual ob-
servations, so that visual inspection of the generated images
remains the most important criterion for quality assessment.
From the illustrations in Fig. 2, it can be observed that RED-
CNN without adversarial feedback generates images that are
severely smoothed. Hence, generated images do not resemble
target images in terms of texture, while preserving most
of the fine structural details, as highlighted in Patches A
and B. However, due to aggressive smoothing, low-contrast
structures in images are attenuated, which can be seen
in Patches C and D. We hypothesize that the smoothing
behavior is related to the fact that in the setup without
auxiliary CNN, the network needs to perform both denoising
and reconstruction simultaneously. The network focuses only
on the denoising part, since it does not succeed in performing
both.

A way to improve on texture is the usage of an auxiliary
discriminator architecture in a cGAN framework, which is
illustrated in the third and fourth columns in Fig. 2. The
cGAN framework with RED-CNN as generator produces
images that resemble the target images significantly better
in terms of generated texture. This is a direct consequence
of the adversarial feedback of the discriminator architecture,
which encourages the generator to create such texture. How-
ever, Patches A, C and D and to a lesser extent B, show
a major limitation of the usage of a conventional CNN as
generator. As can be observed, fine structures highlighted
in the patches are severely deformed or even removed. The
cause of this phenomenon is that the generator prioritizes
to mimic the texture of the NDCT target image, rather than
preserving critical image content.

In order to avert the destruction of essential image content,
the content that is desired in the output image should be
preserved by excluding it from the input to the generator. The
results of the cGAN framework with Laplacian RED-CNN
as generator show that this generator is able to preserve these
fine structural details, while also resembling the target texture
to a reasonable extent. The highlighted patches show that
this method outperforms the others in terms of preservation
of fine structures highlighted in these patches. However, the
generated texture is slightly less realistic compared to the
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TABLE II
RESULTS OF RED-CNN, CGAN (RED-CNN) AND CGAN (LAPLACIAN RED-CNN) ON PATCHES OF INTEREST AND VALUES OF FULL-CT IMAGES

AVERAGED OVER THE TEST SET

RED-CNN cGAN (RED-CNN) cGAN (Laplacian RED-CNN)
PSNR [dB] SSIM [-] TV [-] PSNR [dB] SSIM [-] TV [-] PSNR [dB] SSIM [-] TV [-]

Patch A 22.0562 0.5874 365.70 19.0191 0.4175 616.28 19.6535 0.5233 679.55
Patch B 24.2092 0.8186 139.08 21.3418 0.7437 197.36 21.7002 0.7413 195.49
Patch C 18.8080 0.6556 126.29 16.0615 0.5173 227.87 16.7848 0.5859 228.34
Patch D 21.9552 0.6611 207.65 18.6532 0.4950 346.38 19.8486 0.6042 363.69

Test set 35.8688 0.9494 7,648.08 32.9276 0.9256 8,924.82 33.1356 0.9346 9,210.62

Fig. 2. Results of three different methods for 4 image examples, referred to as Sub-figures A), B), C) and D). For each image in these sub-figures, the
contents of the red box is presented as magnified view at the right bottom. These zoomed versions are referred to as Patches A, B, C and D. Similarly, at
the right top, the absolute difference is shown with the target patch. The display window is ranged within [-9, +56] HU.

results of the cGAN with RED-CNN as generator. Thus,
it can be concluded that the separation of the signal, to
restrict the attention of the generator architecture on only
high-frequency content, can be successfully used to avoid
alteration of image content. On the other hand, due to this
restriction, the generator experiences difficulties in generat-
ing realistic textures.

When combining the results in Table II and Fig. 2, it can be
concluded that PSNR and SSIM favor smooth images, since
RED-CNN without auxiliary CNN obtains superior results.

TV accurately reflects the smoothness and inherently the
realisticness of images. Comparing the results of both cGAN
experiments at the scale of full-CT images as well as local
patches, SSIM correlates with the preservation of structural
details.

In conclusion, the results of the proposed method are still
sub-optimal, in the sense that generated texture should still
improve, while preserving the low level of alterations of
critical image content. A potential improvement could be
realized when optimizing the choice of the Gaussian kernel
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parameters, since the algorithm is very sensitive to the size
of the kernel and the value of σ. The size of the kernel
determines the size of structures that will be captured by
this filtering operation, while the standard deviation (σ) is
highly important for the amount of residual noise on the
low-frequency content that is preserved. Furthermore, the
generator has to reconstruct texture based only on the high-
frequency information that it is provided with. Hence, the
choice of these parameters is a very delicate trade-off.

Therefore, future research should be focused on possible
optimization methods for these parameters, e.g. exploration
of trainable Laplacian Pyramid parameters. Furthermore, to
exploit the benefits of a Laplacian Pyramid even more, it
could be applied at multiple scales instead of only one.
Ensuring that high-frequency information will be extracted at
multiple scales, can be beneficial for both the high-frequency
noise removal process as well as the texture reconstruction.

IV. CONCLUSIONS

Denoising techniques are required in the reconstruction
processing chain of CT images acquired with a reduced-
dose protocol. In this paper, we have presented the Laplacian
RED-CNN, as an alternative to the traditional RED-CNN
generator in cGANs for noise reduction. The proposed
approach separates the input image into low- and high-
frequency bands, which potentially avoids the loss of critical
image content by concentrating the learning of the cGAN on
the high-frequency band. In this way, most high-frequency
undesired content will be removed by the generative model,
while preserving low-frequency structural image content.

The obtained results show the feasibility of this approach
for the low-to-routine CT image-translation task and helps in
avoiding the common pitfall of generative models. However,
the results on texture generation can still be further improved,
by e.g. investing in optimization of parameters for the sep-
aration process with the Gaussian kernel. Furthermore, real
clinical quarter-dose datasets are envisioned as part of future
work in order to provide additional evidence supporting our
claims.

In summary, this study presents a promising point of
engagement for further investigation of generative models
towards finding a reliable deep learning-based noise reduc-
tion for low-dose CT acquisition.
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