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Abstract— The goal of this research is to evaluate the usability
of new features to classify EEG data from several completely
locked-in patients (CLIS), and eventually build a more reliable
communication system for them. Patients in such state are
completely paralyzed, preventing them to be able to talk, but
they retain their cognitive abilities.

The data were obtained from four CLIS patients and
recorded during an auditory paradigm task during which they
were asked yes/no questions. Spectral measures such as the
relative power of δ, θ, α, β and γ frequency bands, spectral edge
frequencies (SEF50 and SEF95), complexity measure obtained
from Poincaré plots and connectivity measures such as the
imaginary part of coherency and the weighted Symbolic Mutual
Information (wSMI) were used as features. The data was
classified using Random Forest and Support Vector Machine,
two methods successfully used to classify mental states in both
healthy subjects and patients. Additionally, two cases were
studied. The first case uses data recorded when the patient
is answering questions, while in the second case it also includes
data recorded when the experimenter is asking the questions.

The classification accuracy during training varies between
51.73 to 67.72% in the first case, and from 50.41 to 67.94%
for the second case. Overall, wSMI with a time lag of 64 ms
gave the best classification accuracy and in general, Random
Forest appears to be the best classification method.

Clinical relevance This case study investigates the usability
of new features based on EEG complexity and connectivity to
classify CLIS patients brain signal, what results in a further
step toward the demand of more effective EEG-based Brain-
Computer Interface communication systems for CLIS patients.

I. INTRODUCTION

Communication is important for human beings, even more
important for conscious patients unable to overtly express
themselves. Locked-in syndrome (LIS) is one such state, in
which the patient maintain his/her cognitive abilities, but
is unable to voluntarily move his/her muscles, except for
eye movements [1]. Despite the condition, patients report
high quality of life, and it was found that higher quality
of life correlates with their ability to communicate [2], [3].
Standard communication method uses eye movements and
blinking, leading several research to build assistive devices
depending on patients’ eyes such as eye tracking or Steady
State Visual Evoked Potential SSVEP-based brain-computer
interfaces (BCIs). VEP has proven to be a faster way to
communicate compared to other brain-computer interfaces
usage [4]. The latter for example was used to evaluate covert
attention in six locked-in syndrome patients. Two reached an
offline accuracy above chance level, and one of them was
able to communicate online [5].
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Later however, LIS patients transition into a state in
which the patient loses the ability to make any voluntary
muscle movement. Even eye movements are lost, meaning
that conventional assistive devices using eye movements
are not usable anymore. This state is called completely
locked-in syndrome (CLIS) [1]. This had lead research to
use brain signals such as EEG and build EEG-based BCI
as an alternative to communicate with patients. In [6],
researchers introduced the ”first EEG-based BCI system ever
for communication with the completely locked-in patients”
via mindBEAGLE. The system uses P300-ERPs or motor
imagery (MI), in addition to three vibro-tactile stimulators
to attempt communication with 9 LIS and 3 CLIS patients.
10 patients were able to achieve high accuracies, 9 were able
to communicate with one of the designed paradigm, and 3
patients were able to communicate with the MI paradigm.

At this point it has been established that EEG could be
use for a binary communication with completely locked-in
syndrome patients. So far, the features used used are event-
related potentials and frequency power of different frequency
bands. In this study, features based on other spectral features
such as the Spectral Edge Frequency (SEF), based on the
signal complexity computed using Poincaré plots, and based
on signal connectivity obtained with the imaginary part of
coherency and the weighted Symbolic Mutual Information
(wSMI) are used to classify EEG data recorded from CLIS
patients. The data was obtained while they are performing
the task of answering questions asked by an experimenter
by thinking yes or no. The data and the experimental setup,
as well as the signal pre-processing, features extraction and
classification methods are described in Sec. II. The results
are presented in Sec. III. This is followed by a discussion
regarding the obtained results before concluding in Sec. IV.

II. TOOLS AND METHODS

This research aims at assessing the usability of new
features and some chosen methods to classify EEG signals
from CLIS patients. This section describes the data, mea-
sures used to extract features and classification methods.
Signal pre-processing, segmentation, features extraction and
statistical analysis were performed with MATLAB R2020a,
the FieldTrip toolbox [7] and custom written scripts. Data
classification was done using the statistical analysis software
R. The package doParallel is used to accelerate compu-
tation.

A. Data description and pre-processing

1) Data description: The EEG data used here were
obtained from 10 CLIS patients and recorded during an
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auditory paradigm task in which the patients were asked
several questions that require a yes or no answer. The raw
data acquisition was performed with BrainVision Recorder
Professional (Brain Products GmbH). The answers to the
questions are known by the family members and/or care-
givers, and naturally by the patient. Fig. 1 illustrates how one
session of recording is organized. It is composed of 20 trials
corresponding to the 20 questions (10 yes, 10 no). Each trial
starts with a rest period of 5 to 10 seconds, followed by the
question (initiated by a trigger) and then a 15-second period
in which the patient is attempting to answer the question by
thinking yes or no. The experimental procedures involving
human subjects described in this paper were approved by
the Internal Review Board of the Medical Faculty of the
University of Tübingen [8].

The questions are paired, meaning that for each question
with a yes answer, there is a corresponding question that an-
swers no. For example, for the question ”Is Paris the capital
of France?”, which is true, the corresponding question would
be for instance ”Is London the capital of France?”. Near
Infrared Spectroscopy (NIRS) signals were also recorded
during the experiment. More information about the patients
can be found in [9].

Fig. 1. Triggers description for one trial. One session is composed of 20
trials: 10 of them corresponding to the questions with yes answers and the
other 10, to those with no answers.

2) Inclusion/Exclusion criteria: The EEG signals were
recorded from different locations for each patient, and even
for the same patient across time and also with different sam-
pling frequency (200, 250 and 500 Hz). The experimenters
did not divulge how they selected these values. The channels
locations, however, were selected depending on the patient
state at the time of the recording. To maintain a sense of
uniformity, only the most common recording channels for
the most patients were used in this study. The channels
were FC5, FC1, FC6, CP5, CP1, CP6 according to the
10/20 system[10]. Four patients satisfy the channels criteria:
Patients 1, 2, 4, 5 from the original dataset [9]. Another
condition is the number of trials, which must be exactly
20 (as shown in Fig. 1). A session with less the 20 trials
means that the experiment was halted due to patient’s fatigue
or some other reasons. Table I shows the number of data
samples for each patient.

3) Signal pre-processing: EEG signals were filtered us-
ing a third order Butterworth bandpass filter with cut-off
frequencies of 0.1 and 45 Hz.

B. Features extraction

The features used for classification are listed below and
elaborated in more details in the following subsections:

• the relative power (RP) of the different canonical fre-
quency bands: δ (0 - 4 Hz), θ (4 - 8 Hz), α (8 - 12 Hz),
β (12 - 30 Hz) and γ (30 - 45 Hz) [11]

• the Spectral Edge Frequencies (SEF) at 50% and 95%
• the ratio SD1/SD2 of the short-term and long-term

variability of the Poincaré plots
• the imaginary part of the coherency (iCOH), and
• the weighted Symbolic Mutual Information (wSMI)

between all pairs of channels.
For each 1-second segment of each trial, RP, SEF,

SD1/SD2 were calculated for each channel while iCOH and
wSMI were computed for all pairs of channels.

1) Relative power: The relative powers of δ, θ, α, β and
γ bands were calculated as the ratio of the total power in the
frequency band and the total power from δ to γ (0.1 to 45
Hz) [12], [13]. For a signal x(t), it is computed using (1).

RP =

∫ f2
f1
Sx(f) df∫ F

0
Sx(f) df

(1)

where f1 and f2 delimit the frequency band of interest. F =
45Hz (upper frequency limit of the γ band) and Sx(f) is
the power spectral density of the signal x(t) at the frequency
f .

2) Spectral Edge Frequency: SEF is the highest frequency
below which a certain fraction of the power of the signal is
present. It is commonly used in sleep analysis and classi-
fication, and is expressed as SEFr where r represents the
fraction of the signal power for which the edge frequency is
calculated [12], [13]. For a signal x(t), it is computed using
(2): ∫ SEFr

0

Sx(f) df = r

∫ Fs/2

0

Sx(f) df (2)

where r equals 50% or 95% [12]. f is the frequency, and Fs
represents the sampling frequency. SEF50 corresponds to the
median frequency of the signal. Values of SEF50 and SEF95
were normalized by the Nyquist frequency so that they are
always between 0 and 1.

3) Poincaré plots index: A Poincaré plot is a non-linear
method to analyze the variability of time series. signals.
Given the signal x(t), t = 1...n, it is constructed by plotting
the EEG voltage at a specific time x(k) on the x-axis and
the EEG voltage x(k+1) after a constant time delay on the
y-axis. An optimum value of this time delay is 1/5 to 1/4 of
the dominant cycle period [14]. For example, at a sampling
rate of 256 Hz, a time delay value of 1 is equivalent to 4
ms.

Fig. 2 illustrates one Poincaré plot. SD2 represents the
standard deviation of the points along the line of identity.
SD1 is perpendicular to the line of identity [15]. The ratio
SD1/SD2 (Poincaré index) is often used to evaluate the time
series complexity [14].

SD1 =

√
2

2
SD(xn − xn+1) (3)

5728



Fig. 2. Poincaré plot showing SD2 and SD1, the standard deviation of the
points from the long axis (line of identity) and the short axis (perpendicular
to the line of identity) respectively. A round oval pattern of the plot
represents a random signal, while an elongated shape represents signals
with linear features.

SD2 =

√
2SD(xn)2 −

1

2
(xn − xn+1)2 (4)

where SD is the standard deviation of the time series xn.
4) Imaginary part of coherency: Coherency is a linear

connectivity measure that assesses the relation between two
signals x and y. Its value at a frequency f can be obtained
using (5) [16].

Cxy(f) =
Sxy (f)√

Sxx (f) · Syy (f)
(5)

where Sxx and Syy are the individual power spectral density
of x and y, and Sxy is the cross power spectral density of x
and y at frequency f .

The coherency Cxy is a complex entity, and the use of
only its imaginary part was introduced in [17] to reduce the
effects of volume conduction in EEG signals and avoid false
connectivity.

iCOHxy(f) = =(Cxy(f)) (6)

Quantitatively, its value ranges from -1 to +1. A higher
value of coherence reflects an increased functional relation-
ship between the two signals.

5) Weighted symbolic mutual information: Weighted
Symbolic Mutual Information assesses both linear and non-
linear functional connectivity between two signals, channels
or brain regions x and y. It is calculated using (7). The EEG
signal is first transformed into a sequence of discrete symbols
(x̂, ŷ) that are coded according to trends in amplitudes of k
time samples separated by a temporal separation of elements
τ [18]. In this research, k = 3 and τ = 4, 8, 64 ms.

wSMI(x, y) =
1

log(k!)

∑
x̂∈X̂

∑
ŷ∈Ŷ

w(x̂, ŷ)p(x̂, ŷ) log(
p(x̂, ŷ)

p(x̂)p(ŷ)
)

(7)
The value of wSMI equals 1 when the two signals are

completely dependent, and zero if one signal is completely
independent of the other.

6) Features extraction: The values obtained from each
measure were averaged
• starting from the Last word onset until the end of the

Thinking period (Case 1),
• starting from the Question trigger until the end of the

Thinking period (Case 2),
to investigate if there were any difference in classification
accuracy between both cases (cf. Fig. 1).

TABLE I
SAMPLES AND FEATURES DIMENSION

Patient Samples Features dimension (p)
RP SEF50/95 iCOH wSMI SD1/SD2

P1 60

30 6 90 90 36P2 540
P4 700
P5 580

Table I shows the number of data samples for each
patients, and also the features dimension for each measure.
The column ”Samples” represents the number of trials. Data
from each patient have been arranged in a matrix in which
the features were organized into p columns and each row
represent data from each trial.

C. EEG classification

Data from each patient was subsequently classified using
Random Forest and Support Vector Machines. The data was
split into a 70/30 train/test sets. The train set was then
partitioned into 5 groups of equal size. 4 groups were used
to train, and the remaining group was used to evaluate the
obtained model. This is repeated for all possible choices of
held-out group, and repeated 2 times (5-fold cross-validation
repeated 2 times). The performance score was obtained by
averaging all performance runs [19], [20].

A random number generator was used so that the samples
used during each training run was the same for all methods.

1) Random Forest: Random Forest uses decision trees to
build its prediction models. At each split, a random sample
of m predictors is chosen from the full set of p predictors,
and the split can only use only one of these m predictors.
In general, m =

√
p. This is done for each split and the

overall prediction is obtain by choosing the class that occurs
the most [21].

The R packages randomForest (denoted as rf later in
this paper) and ranger were used to classify the data using
Random Forest [22], [23]. The optimal number of trees for
each algorithm was determined by manually setting different
number of trees (23 values from 5 to 500) and choosing the
number that produces the best performance.

2) Support Vector Machines: The R packages caret,
e1071 and kernlab were used to classify with Support
Vector Machine (SVM). SVM is a classification method
usually applied to a two-class setting. It is an extension of
support vector classifier, which consist at using an hyper-
plane to separate the two classes if the boundary between
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them is linear. SVM extends the support vector classifier
by enlarging the feature space so that non-linear boundaries
between classes are also taken into account. It uses kernels
to do so [19], [24].

The kernel functions used in this research are:
Linear kernel:

K(xi, xi′) =

p∑
j=1

xijxi′j (8)

Polynomial kernel:

K(xi, xi′) =

1 +

p∑
j=1

xijxi′j

d

(9)

where d is a positive integer that represents the degree of
the polynomial. The classification task was performed using
degree values from 2 to 5.

Radial kernel:

K(xi, xi′) = exp

−σ p∑
j=1

(xij − xi′j)2
 (10)

where σ is the inverse kernel width and its value was selected
between 20 values from 0.0005 to 0.01.

For all SVM algorithms, the classification was done with
different values of the cost C that was chosen from 20 values
between 0.05 and 1.

3) Evaluation metrics: The performance of each classi-
fication method was evaluated using the classification accu-
racy:

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

where TP: True Positives, TN: True Negatives, FP: False
Positives, FN: False Negatives.

D. Statistical analysis

Friedman’s tests were performed to test the effects of
starting point of the features averaging (Case 1 vs Case 2) on
the classification accuracy [25]. The null hypothesis is that
this starting point does not affect the classification accuracy
against the alternative that is does. This is performed using
MATLAB’s friedman function.

III. RESULTS

The goal of this study is to assess the usability of new
EEG features to classify data from CLIS patients into yes/no
answers. The features used were the relative power of dif-
ferent frequency bands, spectral edge frequency, complexity
measures via the Poincaré plots, and connectivity measures
such as the imaginary part of the coherency and the weighted
Symbolic Mutual Information. Different classification meth-
ods were also used: Random Forest implemented with the
R packages randomForest and the ranger, as well
as SVM with linear, polynomial and radial kernels. The
classification task was performed on data extracted from the
Last word onset (Case 1) and from the Question trigger
(Case 2). Parameter tuning (number of trees for Random

Forest, other parameters for SVM) was performed semi-
automatically. The results reported here were obtained from
classification methods with the highest train accuracy that
also gave the best estimates on the test data.

1) Patient 1: In Case 1, the highest train (test) classifica-
tion accuracy was achieved by applying Linear SVM to the
relative power of the different frequency bands with 67.72%
(72.22%). The most important variable for this classifier was
the relative power in channel FC5 in the δ band. Patient 1 was
the patient that achieved the highest classification accuracy
among all patients.

Table II shows the classification accuracy for both Case
1 and Case 2 using SVM with a linear kernel. It indicates
that the same algorithm does not yield similar results for
both cases: an algorithm performing well on Case 1 does
not necessarily mean that it will also perform well on Case
2. In Case 2, the best performance was achieved by applying
Random Forest (rf with 10 trees) to the SEF95 feature with
67.94% (72.22%). The most important variable in this case
was channel CP5.

TABLE II
SVM LINEAR KERNEL PERFORMANCE FOR PATIENT 1

Case 1 Case 2
Train acc. 67.72% 64.75%
Test acc. 72.22% 38.89%

Sensitivity 66.67% 33.33%
Specificity 77.78% 44.44%
Precision 70% 40%

Recall 77.78% 44.44%

Random Forest methods performed better than the others
on the connectivity measures as can be seen on Fig. 3, which
illustrates the performance of the different classification
methods for each selected feature for Patient 1 (Case 1).

Train classification accuracy (Patient 1)
"Thinking period"
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Fig. 3. Train classification accuracy of all features for Patient 1 (Case 1).
The highest train accuracy was obtained using Random Forest (ranger) on
the wSMI4 features. However, the classifier did not generalize well, leading
to a test accuracy of 55.56%. A higher test accuracy of 72.22% was achieved
using Random Forest ranger on the relative power, with a train accuracy of
67.72%.

2) Patient 2: For this patient, the highest classification ac-
curacy for Case 1 was attained with wSMI64 using Random
Forest rf with 7 trees with 58.64% (51.23%). With wSMI4,
a higher test data accuracy of 53.7% (train accuracy: 53.7%)

5730



was obtained with 8 trees. The most important variables for
each case are the wSMI values between channels FC6 and
CP5 in the β band, and channels FC1 and FC6 in the α band
respectively.

For Case 2, classification with Random Forest ranger
with 50 trees reached 57.3% (48.77%) with the wSMI4
features. But SVM with a polynomial kernel was able to
achieve a 53.04% (50.62%) classification accuracy when
applied to the iCOH. The most important channels are FC1
and FC5 in the β bands, and FC5 and CP1 in all frequency
bands, respectively.

3) Patient 4: Patient 4 achieved the lowest train and test
classification accuracy of all patients. For Case 1, the highest
train accuracy was obtained using SVM with a polynomial
kernel on the wSMI64 features: 52,96%, however the test
accuracy only achieved 48.1%. A higher test accuracy of
52.38% was attained on the iCOH, with a train accuracy of
51.73%. The most important variable in the iCOH feature
appear to be the connectivity value between channels FC5
and CP1 in all frequency bands. Fig. 4 represents the
performance of all classification methods for each feature
for this patient.

The feature with the highest train accuracy was also a
connectivity feature for Case 2, this time with the wSMI64.
The Random Forest ranger achieved a 50.41% (51.43%)
accuracy, and the most important variable is the connectivity
value between channels FC5 and CP6 in the α band.

Train classification accuracy (Patient 4)
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Fig. 4. Train classification accuracy of all features for Patient 4 (Case 1).
For Patient 4, the train classification accuracy were relatively random.

4) Patient 5: The highest classification accuracy for Pa-
tient 5 was obtained with SVM with a polynomial kernel
on the wSMI64 features: 57.99% (45.4%) for Case 1. The
classifier’s most important variable is the connectivity value
between channels FC6 and CP5 in the α band. However, the
method that generalizes better on the test data is Random
Forest ranger applied to the wSMI64 features, attaining a
train (test) accuracy of 53.34% (52.87%). The most important
channels are the same as before, except that in this case, it
is in the γ band.

For Case 2, an accuracy of 58.5% (45.4%) was achieved
with Linear SVM on wSMI4. The connectivity value be-
tween channels FC1 and CP1 in the δ band came to be
the most important variable. Anyhow, Random Forest rf

performed better in the relative power, with a performance
of 53.21% (54.02%). In this case, relative power of different
frequency bands in channel FC6 was the most important
variable.

5) Statistical analysis: To assess if the starting point of
the EEG signal extraction effects the performance of each
classification algorithm, Friedman’s tests were performed on
the classification results. The classification accuracy results
were arranged to that the columns represent each case (Case
1 and Case 2) and each couple of rows represent the train
and test accuracy for each classification method.

Table III shows the results of the significance tests. The
low p-values of SEF95 (p = 0.0377) and wSMI8 (p =
0.0229) for Patient 1 indicate that the starting point of signal
extraction (Case 1 vs Case 2) affects the performance of
the classification algorithms. In those particular cases, the
performance of the classifier is significantly higher in Case
2 compared to Case 1. For all the other cases and the other
patients, however, the null hypothesis was rejected, meaning
that the starting point of signal extraction did not affect the
performance of the different classification methods.

TABLE III
STATISTICAL ANALYSIS RESULTS

P1 P2 P4 P5
RP 0.1153 1 0.3817 0.4884

SEF50 0.5997 0.2888 0.8611 0.1573
SEF95 0.0377 0.0833 0.1656 0.2207

SD1/SD2 0.4795 1 1 0.2987
iCOH 0.2888 0.1659 0.8611 0.2207

wSMI4 0.729 0.2987 0.729 1
wSMI8 0.0229 0.5997 0.4884 0.729

wSMI64 0.3817 0.0833 0.1659 0.2987

IV. DISCUSSION AND CONCLUSION

Communication plays an important role in our every day
life, more importantly in the lives of patients that are unable
to overtly express themselves but are perfectly aware of their
surroundings. This is the case of patients diagnosed with
(completely) locked-in syndrome. In addition, it has been
established that patients that are able to communicate report
a higher quality of life. Previous studies that use EEG to build
communication systems for CLIS patients are using ERPs or
motor imagery. In this research, new features such as SEF,
Poincaré index SD1 and SD2, imaginary part of coherence
and wSMI were utilized to classify patients’ EEG signals.
The data were recorded during experiments as they attempt to
answer yes/no questions. Random Forest and Support Vector
Machine with linear, polynomial and radial kernels were used
for the classification tasks.

Overall, despite its limited number of samples, Patient 1
showed the best classification accuracy results. Recording
data from such patients is challenging since the feasibility of
the recordings depend on the patient’s health status and moral
state. This explains the small number of samples for Patient
1 compared to the other patients. On the other hand, Patient 4
was the patient with largest number of samples, but also the
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lowest classification accuracy results. Increasing the number
of cross-validation folds and repetitions during training did
not change that. Patient 1 spent the longest time in ALS with
10 years, while Patient 2 and 4 spent 4 years in that state.
In addition, while for the other patients, several years passed
before they became completely paralyzed, Patient 4 became
quadriplegic after only half a year [9]. The length of this
period might be a contributing factor to the patients’ poor
performance.

The results of this research showcase that the most
important variable depends on the method applied to the
classify the data. In general, Random Forest appears to be
the best classification method, especially when applied to
connectivity measures. wSMI with time lag of τ = 16ms
gave the best classification accuracy compared to the other
time lags used. This may imply that trends in amplitude
of the signals from the two channels of interest are more
discriminating of the two classes for a longer time interval.

Statistical analysis results show that SEF95 and wSMI8
for Patient 1, the classifiers performances were affected by
the point of data extraction: when the experimenter starts
asking the question, or when the patient is instructed to
answer it. Results show that the performance of the classifier
is significantly higher in Case 2 compared to Case 1. This
suggests that for these two cases, the patient’s brain signals
are activated from the time the experimenter starts asking the
question.

In [6], 2 out of 3 CLIS patients were able to communicate
using P300 potentials evoked by vibro-tactile stimulation
and motor imaginary, with an accuracy of 20 to 100%.
This shows, alongside the present study, that results can
differ drastically between patients. On the other hand, despite
having achieved the highest accuracy, Patient 1’s perfor-
mance are still not sufficient to obtain a reliable EEG-based
brain-computer interface, which requires at least 70% of
accuracy [26]. Furthermore, more data for training is needed,
especially since wSMI seems to be a promising feature
to be considered, in addition to investigating other binary
classifiers.
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