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Abstract— Kidney biopsy interpretation is the gold standard
for the diagnosis and prognosis for kidney disease. Pathog-
nomonic diagnosis hinges on the correct assessment of different
structures within a biopsy that is manually visualized and
interpreted by a renal pathologist. This laborious undertaking
has spurred attempts to automate the process, offloading the
consumption of temporal resources. Segmentation of kidney
structures, specifically, the glomeruli, tubules, and interstitium,
is a precursory step for disease classification problems. Translat-
ing renal disease decision making into a deep learning model for
diagnostic and prognostic classification also relies on adequate
segmentation of structures within the kidney biopsy. This study
showcases a semi-automated segmentation technique where the
user defines starting points for glomeruli in kidney biopsy
images of both healthy normal and diabetic kidney disease
stained with Nile Red that are subsequently partitioned into
four areas: background, glomeruli, tubules and interstitium.
Five of 30 biopsies that were segmented using the semi-
automated method were randomly selected and the regions of
interest were compared to the manual segmentation of the same
images. Dice Similarity Coefficients (DSC) between the methods
showed excellent agreement; Healthy (glomeruli: 0.92, tubules:
0.86, intersititium: 0.78) and diabetic nephropathy: (glomeruli:
0.94, tubules: 0.80, intersititium: 0.80). To our knowledge this
is the first semi-automated segmentation algorithm performed
with human renal biopsies stained with Nile Red. Utility of this
methodology includes further image processing within struc-
tures across disease states based on biological morphological
structures. It can also be used as input into a deep learning
network to train semantic segmentation and input into a deep
learning algorithm for classification of disease states.
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I. INTRODUCTION

A. Kidney Biopsy with Nile Red Staining

Renal biopsy interpretation remains the gold standard
for the diagnosis and staging severity of many kidney
diseases [1]. Visual morphological assessment of the renal
parenchyma provides useful information for disease cat-
egorization by pathologists. Current kidney biopsy tissue
preparation for light microscopy, immunohistochemistry and
electron microscopy are complex, time consuming and tech-
nically challenging. Nile Red is a fluorescent lipophilic dye
that can be used as a fast staining alternative for structural
investigation [2],[3]. Comparing morphology, composition
and distribution of structures in various kidney compartments
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(glomerulus, tubule, and interstitium) across different disease
states using Nile Red may provide mechanistic insight into
their prognostic value of evaluating patients with kidney
disease. However, such an analysis requires reproducible
identification and segmentation of the different kidney com-
partments, a time-consuming process limited by poor intra-
and inter-reader manual assessment of renal biopsy speci-
mens [4],[5]. Figure 1 shows a normal human kidney tissue
specimen processed with Nile Red stain. This example shows
two glomeruli - denoted with ’G’, multiple tubules are also
visible, some labeled ’T’, and interstitium ’I’ which is non-
glomeruli or tubule morphology.

Fig. 1: Kidney biopsy stained with Nile Red

B. Segmentation

Partitioning a digital image has been applied in very
diverse fields of study such as area detection in satellite
images, traffic control, autonomous cars, medical imaging,
face/iris recognition and object detection/classification. To
our knowledge, it has not been used, in segmenting Nile
Red stained renal biopsy specimens. There are currently sev-
eral options for segmentation including region-based, edge
detection, clustering, mask R-CNN (regional convolution
neural network), and fast marching [6]. Within these op-
tions several techniques are subsumed. Region-based utilizes
objects based on threshold value(s). This method works
well when high contrast exists between the foreground and
background, and has the advantage of efficient calculations.
However, region based is limited when the foreground and
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background are homogeneous. Edge detection (eg. water
shedding) uses discontinuous local change within an image
to define boundaries. However it is not suitable when there is
an overabundance of edges in the image even after applying
filters. Clustering (eg. K-mean) divides the image into a
user defined ’n’ number of homogeneous areas based on
distances and works well with small data sets. Drawbacks
to this approach are computation time and that distance
algorithms are not suitable for non-convex clusters. While R-
CNN models entail high training time require many samples,
they are most generalizable therafter and have been and have
been used in kidney pathologic segmentation [7],[8]. A fast-
marching method (eg. Chan-Vese) finds a segmentation that
optimizes an energy functional. A limitation is that it is
highly susceptible to starting position. However, it can be
used for regional or global segmentation. Our images con-
tain an abundance of edges, poor contrast between distinct
morphology, and too few samples on which to train a neural
network adequately. Hence, we selected a combination of
Chan-Vese and a regional based semi-supervised approach
thus benefiting from Chan-Vese generalizability while retain-
ing the benefit of user input. The latter alleviates the issue
of starting position and thus allows for multiple glomeruli
location(s) and fluctations in image scale (size of glomeruli).

II. METHODS

A. Image Acquisition

Images were acquired from human healthy normal
nephrectomy samples and patients with diabetic renal pathol-
ogy (society classification class 3) acquired from the Biobank
for the Molecular Classification of Kidney Disease (PMID:
28747168). Usage of human samples were conducted in
accordance with guidelines set forth by the Research Ethics
Board at the University of Calgary and Alberta Health
Services. Samples were fixed with 4% paraformaldehyde
for 10 minutes followed by staining with Nile Red for 10
minutes, using a Zeiss LSM 880 confocal microscope with
a 20X objective, NA 0.8 equipped with a 24-channel detector
(485 nm to 691 nm) for spectroscopy. Specifically channel
691 was used to capture structural information for purposes
of this study. Diabetic disease states as well as healthy
normal controls where acquired and included in the image
set.

B. Validation Protocol

To establish the ground truth, a nephrologist manually
segmented regions of interest (ROIs) for a sub-sample (n=5)
from the acquired set of 30 images used in development. The
sample of images for manual segmentation was selected us-
ing a random non-repeating number generator {n ∈ 30|n =
5}. This was done for both normal and diabetic samples.
A freehand segmentation in Matlab was used to define
borders and generate masks of glomeruli and tubules with
the remaining non-background being allocated at interstitial
morphology. These manually-generated ROIs were used to
verify the results of the same ROIs using the semi-supervised

segmentation procedure. The Sørensen–Dice coefficient col-
loquially known as dice similarity coefficient (DSC) was
used to calculate the degree of overlap between the ground
truth mask segmentation (X) and the semi-supervised seg-
mentation (Y), as shown in Eq. 1. A DSC value of greater
than 0.70 is considered excellent [9]. DSC values were
calculated for the structures of glomerli, tubules, interstitium
and overall.

DSC =
2 ∗ |X ∩ Y |
|X|+ |Y |

(1)

C. Image Pre-processing

Images were in ’.tif’ format and were processed in Matlab
2019a. Kidney biopsy images were loaded into the Matlab
environment as Red Green Blue (RGB). Prior to the algo-
rithm running, the user completed three tasks: 1) selecting
the center of all glomeruli in the image by double clicking,
2) drawing a ROI around a portion of a tubule (inclusive),
and 3) defining the size of the glomeruli relative to the
image in decimal format to 3 decimal places. RGB images
were subsequently coverted to greyscale using a luminosity
conversion. A 2-D Guassian filter (Eq. 2) was applied to the
images with with an adaptive kernel based on the size of the
glomeruli relative to the image size. Lastly, background was
isolated using a threshold based on the Guassian processed
images.

G(x, y) =
1

2πσ2
e−

x2+Y 2

2σ2 (2)

D. Segmentation of Glomeruli

Both the location and size of glomeruli established in
the preprocessing phase provide a preliminary starting mask
of the glomeruli from which a Chan-Vese optimization
algorithm (Eq. 3) finds a local minimum of entropy over
a set number of iterations, where H(φ) is the Heaviside
equation, u0(x, y) is the input image, and c1, c2, φ are
updated recursively. The number of times the user selects
center(s) of glomeruli also serves as a counter for the number
of times the algorithm will run a glomerulus segmentation
centered at that point. Following this, a series of image
morphological processing occurs including closing, dilation
and area filtering steps. This is then followed by background
subtraction.

F (c1, c2, φ) =

∫
Ω

(u0(x, y)− c1)2H(φ) dxdy

+

∫
Ω

(u0(x, y)− c1)2(1−H(φ)) dxdy

+ v

∫
Ω

|∇H(φ)|

(3)E. Segmentation of Tubules and Interstitium

After the glomeruli are segmented, the mask of their
inverse can be used to further isolate the tubules and in-
tersititium. Tubules are selected for utilizing the mask of the
user-defined tubule sub-sample from the RGB image. This
mask is imposed on the Guassian filtered grayscale image,
to generate an average threshold of the ’tubule’ class. To
ensure inclusiveness, any value above 1.5 standard deviations
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Fig. 2: Semi-Automated Segmentation of RGB Nile Red image (a-c), Semi-Automated-Manual Agreement (d-f)

below the average value within the segment was classified
as a ’tubule’. After the glomeruli, tubules, and background
were established, the inverse of the superposition of these
segment masks were the only structure left - intersititum.
An overview of the algorithm is shown in Algorithm 1.

Algorithm 1: Segmentation Code Overview
Result: Glomeruli, Tubulese, Interstitium
gnum, gsize, tubulethresh← User defined
for j = 1 : numberofimages do
j ← rgb2gray(j), 0.2989R+ 0.587G+ 0.114B
j ← guassfilt(j), G(x, y)⊗ j(x, y)
for i = 1 : len(gnum) do

glom-mask←(glom-mask=[])+Chan-Vese(j(i))
end for
j ← j - glom-mask
if j ≥ tubulethresh − 0.5 ∗ tubulesampleσ then

tubule-mask ← j
else

interstitium-mask ← j
end if

end for

III. RESULTS

A sample of one the images (Fig. 1) that was run through
the pipeline described is shown in Figure 2. Fig. 2a) are
glomeruli, 2b) are tubules and 2c) is the interstitium. Figure
2d)-2f) shows the results of DSC calculations comparing
the agreement between the semi-supervised segmentation
and full manual segmentation of the three morphological
structures. The white portion of the mask denotes areas of
overlap between the two modalities, X ∩ Y ; green where
X * Y and magenta where Y * X . Figure 2 d), e) and f)
denote the glomeruli, tubules and interstitium, respectively.
DSC values for the 5 randomly selected samples of disease
and healthy states are reported in Table 1. An independent
samples t-test showed that there was no difference in the DSC
values between healthy control and diabetic kidney images
t(28)=0.32, p=0.75. The two groups included 5 images with
the 3 compartments (glomeruli, tubule, and interstitium)
making (n=15) healthy control samples and (n=15) diabetic
nephropathy instances.

IV. DISCUSSION
We showcase a semi-automated segmentation tool that

allows for rapid and reproducible segmentation of glomeruli,
tubules and interstitium in Nile Red stained human kidney
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TABLE I: Dice Similarity Coefficient
Structure Control DCS ± SE Diabetes DCS ± SE
Glomeruli 0.92 ± 0.01 0.94 ± 0.01
Tubules 0.86± 0.01 0.80 ± 0.02

Interstitium 0.78± 0.02 0.80 ± 0.03
Overall 0.85 0.85

biopsy specimens. Nile Red is a fast and inexpensive tool to
investigate structural differences making it ideally suited for
investigating any changes in glomeruli, tubules and intersti-
tium of healthy versus disease states. Although it was pos-
sible to stain compartments for specific markers we selected
a more difficult problem so the process would more readily
generalize. Continued research into this important area relies
on the correct segmentation and subsequently classification
of different morphological renal structures/compartments that
are expected to vary with disease state such as diabetes.
The results of the DSC analysis showed 85% agreement
between automated and manual segmentation techniques for
both healthy and diabetic images. No discernible difference
in the agreement rate was found when comparing healthy
control and diabetic disease state images. These results
demonstrate that this is very promising alternative method to
the full manual segmentation approach. While we obtained
excellent agreement, there were a couple of notable areas
of discrepancy. First, in the glomerulus, segmentations were
predominantly located around the glomerular tuft. This is
an area that is sometimes included in the glomerulus but
other times not [10]. With this knowledge, however, the
user could change the starting size of the semi-supervised
segmentation so as reduce the expansion of the Chan-Vese
algorithm over the curve set. Additionally, depending on the
amount of transection of tubules, a doughnut or ‘blob’ shape
may emerge if the transection is in yz plane versus xy or
xz. Such lumens were excluded by the program instead of
attributing the area to the intersititum. Limitations with this
method include that segmentation of the tubules is based on
applying a threshold and therefore is tailored to this particular
type of image capture. Chan-Vese segmentation is also prone
to errors in starting position so it is crucial the user defines
the centers for the glomeruli at the outset. Additionally this
method was not compared with other open source options
ie. ilastik.
Despite the shortcomings, this study is a prime example
of using a human-in-the-loop automation. All deep learning
based segmentations require training, this method works by
offloading the segmentation work of pathologists without
losing their expertise in structure identification [11]. Sec-
ondly, should users suffer from too small a sample size
for deep learning this represents an alternative to investi-
gating morphological differences in kidney disease states.
The rapid rise of image analysis as part of the artificial
intelligence suite of methodologies has barely been exploited
in medicine [12]. However, “incorporation of new tools
into traditional histopathological evaluation of renal tissue
is needed to improve diagnostic precision and predictive
value of renal biopsy in kidney disease” [13]. It also offers
an alternative to direct deep learning segmentation, which

is both computationally and temporally expensive to train,
greatly limiting its potential for use. Deep learning is an
approach that can be trained to recognize patterns in images
through a network of artificial neurons. The outcomes of
the processes described in the current study can be used as
input into a deep learning classifier, substantially reducing
the training burden. The script and supplementary notes can
be found at https://github.com/adriennekline/
renal-pathology-segmentation

V. CONCLUSION
This showcases a semi-supervised automated segmentation

method as applied to renal biopsies using Nile Red. To our
knowledge this is the first of its kind that requires mini-
mal user input with robust segmentation results, reducing
the temporal burden on human experts. This methodology
can be used in other image processing contexts to discern
structural differences based on morphological characteristics.
In addition, resulting images can be used as input into a deep
learning classifier for training segmentation or identifying
regions of interest for classification of disease states.
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