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Abstract— Diabetic Retinopathy is a major cause of vision
loss caused by retina lesions, including hard and soft exudates,
microaneurysms, and hemorrhages. The development of a
computational tool capable of detecting these lesions can assist
in the early diagnosis of the most severe forms of the lesions
and assist in the screening process and definition of the best
treatment form. This paper proposes a computational model
based on pre-trained convolutional neural networks capable of
detecting fundus lesions to promote medical diagnosis support.
The model was trained, adjusted, and evaluated using the
DDR Diabetic Retinopathy dataset and implemented based on
a YOLOv4 architecture and Darknet framework, reaching an
mAP of 11.13% and a mIoU of 13.98%. The experimental
results show that the proposed model presented results superior
to those obtained in related works found in the literature.

I. INTRODUCTION

Diabetes causes a disease that affects the eyes named
Diabetic Retinopathy (DR), a significant cause of vision loss
in working-age adults. Oftamologists identify DR by eye
exams that aim to identify lesions of the retina, including
hard exudates (EX), soft exudates (SE), microaneurysms
(MA), and hemorrhages (HE). Solutions presented in the
literature assist in diagnosing DR through deep neural net-
works, such as [1]–[5]. Although researchers use deep neural
networks to detect lesions in the fundus images, they still
have limitations in the results obtained, mainly due to the
low representativeness of the attributes extracted from the
images used for training the models. In this context, this
work aims to present a computational model based on pre-
trained convolutional neural networks capable of detecting
lesions of the fundus of the eye to promote more efficient
and more accurate medical diagnosis support than analogous
works found in the literature. The main contribution of this
work is to present a model of convolutional neural network
based on a One-Shot detector, and applying the concept of
transfer learning for resource extraction in the upper layers
of the network, and obtaining characteristics of the fundus
lesions in the posterior layers through training in the public
Dataset for Diabetic Retinopathy (DDR) [5].
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II. RELATED WORK

Benzamin et al. [1] presents a deep learning model for
identifying hard exudates present in fundus images affected
by DR. The authors developed an 8-layer convolutional
neural network. The main limitation of the work was not
to detect soft exudates, hemorrhages, and microaneurysms.
Porwal et al. [2] used deep learning models for segmentation,
classification, and detection of fundus lesions during the
’IDRiD: Diabetic Retinopathy - Segmentation and Grading
Challenge’ is presented. The detection challenge aimed to
obtain the location of the optical disc (OD) and the fovea.
The winning team presented a method based on ResNet-
50 and VGG architecture. The work presented by Porwal
et al. [2] was limited to presenting only the detection fovea
and OD. Mateen et al. [3] proposed a pre-trained framework
based on a convolutional neural network to detect exudates
in fundus images through learning transfer. Inception-v3,
ResNet-50 and VGG-19 architectures were used. The main
limitation of the work was not to detect hemorrhages and
microaneurysms. Li et al. [5] presented a new Diabetic
Retinopathy dataset called DDR and evaluated state-of-the-
art deep learning models for classification, segmentation,
and DR lesions detection. The authors tested state-of-the-
art object detection models to assess performance on the
DDR dataset, including Faster R-CNN, SSD, and YOLO.
They presented results with the mean Average Precision
(mAP) and mean Intersection over Union (mIoU) metrics
obtained in the validation and test sets. Researchers applied
deep neural networks to identify DR, but the deep learning
models used presented limitations in the results presented.
Although deep learning can analyze medical images, it still
has limitations, with a gap between research and clinical
application. This problem is associated with how deep learn-
ing automatically extracts the most discriminating resources
from the training examples. This work intends to present a
model capable of identifying the fundus lesions employing
digital image processing techniques and convolutional neural
networks that detect the lesions with greater precision than
the works found in the literature.

III. MATERIALS AND METHODS

The proposed model was developed based on the YOLOv4
architecture, according to the block diagram of the proposed
model illustrated in Fig. 1, and the Darknet [6] framework.
We trained the model for 8,000 epochs and 64 lots per epoch,
with a learning rate of 0.0001 and a momentum rate of 0.949.
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Fig. 1. Block diagram of the proposed model.

The size of the anchors of the bounding boxes varies
between 1 and 200. After detection, we reached a confidence
percentage for each identified lesion. We use a core i7 micro-
computer with 16GB of RAM and an NVIDIA GTX 1080
TI GPU. The YOLOv4 architecture is a One-Shot detection
model capable of detecting objects without a preliminary step
instead of a Two-Stage detector that uses a preliminary stage
where regions of importance are detected and then classified
to verify whether we detect an object in these areas. The
advantage of a One-Shot detector is the speed with which it
can make inferences in real-time. Besides, another feature of
the model is the possibility to work on edge devices and with
low-cost hardware whose training with just one GPU [6].

A. Dataset and Image Preparation
We obtained the fundus lesions images used in this work

from the DDR fundus image dataset. This dataset has 757
images with annotations of the fundus in JPEG format
with variable sizes. The training of the proposed model
has challenges, such as the small number of examples of
lesions, and the fact that they do not have a well-defined
format, varying according to the stage of the disease. As a
result, we augmented the dataset from the derivation of the
original images and the annotation of DR lesions applying
translational and rotation transformations to the original
images, resulting in eight new images for each annotated
image in the DDR dataset. After, it was necessary to balance
the samples of lesions since there was a significantly higher
EX number than SE. Finally, we trained our model to detect
lesions in the fundus of the eye using bounding boxes drawn
around the region of interest of the objects.

B. Pre-Processing
As illustrated by Fig. 1, we used the median filter with a

3×3 kernel to smooth the image. Also, we applied contrast
limited adaptive histogram equalization (CLAHE) to the
L component of the LAB color space of DDR images to
enhance the contrast. Besides, to measure quantitatively the
best contrast obtained in the images after the enhancement,
we used the metric Measure of Enhacement [7]. Furthermore,
finally, we converted the images of the fundus to the RGB
color space.

C. The Proposed Approach
After the pre-processing and attribute engineering step

previously described, we obtain the input images in the archi-

tecture. Then, we rescale the images to the size of 608×608
pixels at the network entrance to reduce dimensionality and
the computational cost during training; however, without
reducing the accuracy of the model, avoiding high rates of
error of the classifier. Besides, we partitioned the dataset
in 50:20:30 proportion for training, testing, and validation,
respectively. Finally, we use the network Backbone as an
extractor of pre-trained resources in a set of image classifica-
tion data, useful for detecting objects in the last layers of the
network. We obtained the set of weights used for pre-training
from Common Objects in Context (COCO) [8], and the
Backbone used in the experiments was a CSPDarknet53 [9]
with activation function Mish [10].

We use the Neck to extract different resource maps from
different backbone stages, constituting extra layers between
the Backbone and the Head. The Neck used in the exper-
iments was the Path Aggregation Network (PANet) [11],
which allows a better propagation of information from the
bottom to top or top to bottom. Head is the network in
charge of making a dense prediction (final prediction) and is
composed of a vector containing the predicted bounding box
(center coordinates, height, width), the forecast confidence
score, and the label. The Head used in the experiments was
the YOLOv3 based on anchors [12].

Besides, we used Cross-Iteration Batch Normaliza-
tion [13], and regularization employing the Drop Block
technique, in which we hide sections of the image from the
first layer, i.e., we discard resources in a contiguous region of
a resource map [14]. Finally, to remove the bounding boxes
representing the same object, keeping the most accurate one,
we used the Non-Maximum Suppression [15] technique.
The loss function adopted for the bounding boxes was the
Complete Intersection Over Union Loss [16], which aims
to provide faster convergence and superior performance in
detecting lesions.

D. Pre-training

We performed transfer learning to train the proposed
model initializing the weights of the architecture with
weights from the COCO challenge dataset. COCO provides a
large set of annotated image data for object detection tasks.
We modified the output of the proposed model to suit the
detection task and preserved the knowledge of the upper
layers.
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IV. RESULTS AND DISCUSSIONS

We ran the experiments using the DDR public dataset.
First, the proposed model was implemented using the Dark-
net framework and trained with a deep neural network
architecture based on the YOLOv4 model. After that, we
performed transfer learning based on the pre-trained weights
in the COCO dataset. We evaluated our model with the AP
(Average Precision), mAP, and mIoU metrics to compare the
results.

Fig. 2. Loss function×epochs×mAP in the test step.

Fig. 2 shows the graph of the loss function (blue line), as a
function of 8,000 epochs performed in the training stage, and
values of the mAP (orange line) for detecting lesions in the
fundus of the eye. Also, while it occurs the interactions of
architecture training, the loss value decreases. In general, the
mAP has a more significant increase at the beginning of the
training. It then tends to reduce until there is stabilization
due to the adjustment of the model during training. It is
possible to verify that the highest value obtained for mAP
was approximately 11%, while the lowest value obtained for
the loss function was 31.26%. After the end of the training,
it was possible to get the following AP values for each
lesion: 5.72% (EX), 21.62% (SE), 1.52% (MA), and 15.66%
(HE). We obtained 11.13% of the mAP with a limit value
of IoU@0.5, and 13.98% of the mIoU, as shown in Table I.
We used a test dataset to evaluate the performance of the
proposed model. We adopted the threshold value IoU equal
to 0.5 (IoU@0.5) and mIoU to assess the detection quality.
Besides, we used the mAP metric, often used to measure the
accuracy of object detectors [17], and [12], which has the
purpose of calculating the average precision obtained in all
evaluated classes.

We used the Intersection over Union (IoU) metric to mea-
sure the accuracy of an object detector in a specific dataset.
We also measure the proposed model with various metrics to
evaluate its performance in detecting fundus lesions. Table I
presents the results obtained by the proposed model with
the metrics AP, mAP, and mIoU, as well as the results of
the approaches found in the literature that used One-Shot
detection architecture. As noted, the values obtained by the

TABLE I
AP, MAP, AND MIOU METRICS OBTAINED IN THE DETECTION OF

LESIONS IN THE FUNDUS OF THE EYE IN THE VALIDATION SET.

Models AP mIoU
EX SE MA HE mAP

YOLO [5] 0.39 0 0 1.01 0.35 0.05
SSD [5] 0 2.27 0 0.07 0.59 0.15

Proposed Approach 5.72 21.62 1.52 15.66 11.13 13.98

proposed model were higher than those obtained by related
works. For example, in [5] the authors report an mAP of
0.35% for the model trained in the DDR dataset. On the other
hand, we carried out our experiments on the same dataset,
and we obtained an mAP of 11.13%.

Fig. 3. Detected lesions and the degree of confidence added in each object
located in the fundus image.

It is possible to verify that the proposed model also
obtained better results in the metrics of AP and mIoU. After
filtering (by IoU and confidence limits) and obtaining the to-
tal number of bounding boxes in the test step, we consider the
values of True Positive (TP), True Negative (TN), False Pos-
itive (FP), and False Negative (FN) to quantitatively evaluate
the results. Then, we calculate the Accuracy, which considers
among all the Positive class classifications that the model
made, how many are correct; the Recall, which assumes
among all situations of class Positive as expected value,
how many are correct; and the F1-Score, which calculates
the harmonic average between Precision and Recall. Table II
shows the results obtained with the metrics Precision, Recall,
and F1-Score during the experiments carried out with the
model proposed in the validation and test sets.

Note that in the test set, the value of the F1-Score measure
followed the average value of Precision and Revocation, so
the accuracy obtained by the model was reliable. Fig. 3
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TABLE II
THE PROPOSED MODEL RESULTS IN THE VALIDATION AND TEST SETS,

ACCORDING TO PRECISION, RECALL, AND F1-SCORE METRICS.

Set Precision Recall F1-Score
Validation 0.23 0.11 0.15

Test 0.20 0.11 0.15

shows lesions detection examples and the degree of confi-
dence obtained in each object located in an image of the
fundus. Confidence levels ranged from 25% to 94%. Fig. 3
shows the results of the detections made by the proposed
model, where it is possible to observe the identification
of several lesions. The model took 263.55 milliseconds to
perform the inference. With the minimum confidence limit
set to 25%, we identified the following lesions with their
respective confidence percentages. The experimental results
showed that the proposed model has greater precision in
detecting SEs, HEs, and EXs lesions but a relatively low
precision in detecting MAs, suggesting that the model is
inefficient in learning MAs. Microaneurysms in mild DR
are challenging to detect as they are tiny objects. Besides,
there are lesions of the same type with very different shapes
and sizes, which generates a high number of FP and FN
and decreases the model’s ability to predict. Even with
data augmentation, which improves deep neural network
architecture to extract attributes and recognize patterns, there
is still the problem of not having a significant number of
different examples for each type of lesion. This issue makes
it difficult to train the neural network and directly impacts
the performance of the model in making new inferences and
adequately identifying the different types of fundus lesions.
All these characteristics added to the great variety of size,
intensity, shape, and contrast of the lesions justify the low
results obtained during the experiments.

V. CONCLUSIONS

This paper presented a convolutional neural network
model based on a One-Shot detector to detect the fundus
lesions caused by Diabetic Retinopathy. The training and
validation process of the model used the DDR public dataset,
in which we partitioned it into a 50:20:30 ratio, and the
identification of the lesions reached an mAP of 11.13%. A
YOLOv4 deep neural network architecture and the Darknet
framework implemented the proposed model, achieving an
Average Precision of 5.72% for Hard Exudates, 21.62%
for Soft Exudates, 1.52% for Microaneurysms, and 15.66%
for Hemorrhages. The Intersection over Union average was
13.98%. The experiments carried out achieved promising
results, surpassing the related works found in the literature
and demonstrating that detecting DR lesions in the fundus
of the eye can be performed with good precision using deep
neural networks that detect objects in One-Shot. As future
work, we intend to use new structures for the Backbone,
Neck, and Head of the architecture used in the proposed
model. We also intend to experiment with other public

datasets and models that perform object detection.
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