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Abstract— As an inverse problem, parallel magnetic 

resonance imaging (pMRI) reconstruction accelerates imaging 

speed by interpolating missing k-space data from a group of 

phased-array coils. Deep learning methods have been used for 

improving pMRI reconstruction quality in recent years. 

However, deep learning approaches need a large amount of 

training data that are acquired from different hardware 

configurations and anatomical areas. Data distributions may be 

different between training data and testing data, and a long-time 

training is needed. In this work, we proposed a broad learning 

system based parallel MRI reconstruction that exploits 

approximation capability of one-layer neural network through 

broadening network structure with expanded nodes. 

Experimental results show that the proposed method is able to 

suppress noise in compared to the conventional pMRI 

reconstruction. 

I. INTRODUCTION 

Magnetic resonance imaging (MRI) is inherently slower 
compared to other medical imaging modalities. Long data 
acquisition time in MRI pertains to its sequential data 
acquisition protocol and physical constraints. Slow imaging 
speed causes not only compromise and limits image resolution 
and capabilities but also increased costs and causes patient 
discomfort [1]. For these reasons, accelerating MR data 
acquisition process has been of perennial interest. Parallel 
MRI (pMRI) technique [2] accelerates MRI imaging speed by 
partial data acquisition through k-space undersampling. In 
pMRI, a group of phased-array coils are used to acquire a 
reduced amount of k-space data and missing data are 
reconstructed using acquired data from multiple coils. Due to 
undersampled data acquisition, Nyquist sampling rate criterion 
is violated and results in aliased images, which necessitates 
dedicated reconstruction techniques in pMRI. 

Parallel MRI reconstruction techniques can be classified as 
image-based [3], k-space-based [4], and combinations of 
previous two kinds of methods [5]. In compared to image-
based methods, k-space-based methods don’t need to estimate 
sensitivity profiles from an array of coils, so that incorrect 
estimation of coil sensitivity could be avoided. A typical k-
space-based pMRI reconstruction method is GRAPPA [4]. For 
k-space-based methods, more accurate interpolation strategies 
for reconstructing missing k-space data produces better 
reconstruction quality. Henceforth, a number of methods have 
been proposed to improve interpolation accuracy for 
estimating missing k-space data, hence, reducing aliasing 
artifacts and enhancing signal to noise ratio (SNR). Recently, 
deep learning methods have been used to enhance 
interpolation accuracy in k-space-based pMRI reconstruction 
methods. For example, A robust artificial neural network for 
k-space interpolation (RAKI) [6] was proposed using 
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convolutional neural network (CNN) training on 
autocalibrating signal (ACS) data and then the trained model 
interpolates missing k-space data. DeepSPIRiT also used CNN 
trained on a large database of normalized k-space data using 
coil compression [7]. Another convolutional neural network: 
U-Net was trained on a knee k-space dataset and Human 
Connectome Project (HCP) MR dataset to interpolate the 
missing k-space data using low-rank Hankel matrix 
completion [8]. Neural network has been successfully used to 
solve the inverse problem in deep MRI reconstruction [9]. 

MRI data acquisition is costly in compared to natural 
image acquisition, and therefore have limited training 
databases [10]. Deep learning models are data-hungry, and 
their performance drops precipitously with the decrease in the 
training data size. Transfer learning models are efficient in 
several domains to address data-scarcity problems in deep-
learning based techniques [11]. However, in medical imaging, 
particularly in MRI, training data and testing data may have 
different distributions in source and target domains under 
transfer learning framework [12]. Moreover, MR coil 
architectures and images from different MR scanner vendors 
may have different characteristics and features making transfer 
learning inefficient. Broad learning system (BLS) was 
developed recently for classification and regression tasks 
using one-layer neural network [13]. BLS in one hand reduces 
the size of training data set required while on the other 
eliminates the complexity and long training process prevalent 
in deep neural networks, consequence of BLS’s simple 
architecture.  In this paper, a broad learning system (BLS) is 
investigated for improving interpolation accuracy in GRAPPA 
reconstruction. The proposed method doesn’t require extra 
training data to build an offline training model. The paper is 
organized as following. Motivation and background 
introduction are presented in the sections I and II. The section 
III provides the proposed method. Experimental results and 
conclusion are given in the sections IV and V.  

II. RELATED BACKGROUND 

A. GRAPPA Reconstruction 

GRAPPA reconstruction [4] is generalized as an 
interpolation process to estimate missing k-space data as the 
following equation (1): 

𝑆𝑗(𝑘𝑦 + 𝑟 ∙ ∆𝑘𝑦 , 𝑘𝑥) = ∑ ∑ ∑ 𝑤𝑗,𝑟(𝑙, 𝑏, ℎ) ×
𝐻𝑟
ℎ=−𝐻𝑙

𝑁𝑎
𝑏=−𝑁𝑏

𝐿
𝑙=1

𝑆𝑙(𝑘𝑦 + 𝑏 ∙ 𝑅 ∙ ∆𝑘𝑦 , 𝑘𝑥 + ℎ ∙ ∆𝑘𝑥)                                         (1) 

, where S represents k-space signals, w denotes the weight 
coefficients estimated by using ACS data, R is acceleration 
factor, j is the target coil interpolated by all other coils counted 
by l, and b and h construct the interpolation kernel. The indices 
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kx and ky represent data positions along frequency encoding 
and phase encoding directions, respectively. 

The interpolation coefficients are calculated at first by 
using ACS data acquired in k-space. Then, those estimated 
coefficients are used to interpolate missing k-space data. It can 
be considered as a linear regression model with complex 
values of k-space data for solving the linear inverse problem. 
However, the linear regression model cannot reconstruct 
missing data exactly [16, 17], since a finite set of acquired data 
is provided and those acquired data also have noise and 
outliers produced from data acquisition hardware. 

B. Broad Learning System 

Broad learning system [13] is a neural network architecture 
which is not dependent on deep structures. Distinct from many 
layers in deep learning, broad learning doesn’t have enormous 
connections among hierarchical structure of layers, so its 
structure is concise and transparent. To enhance accuracy of 
classification and regression tasks, broad learning system 
increases the width of its network structure rather than 
deepening network structure in deep learning models. 
Additional computational burden in expanding neural nodes 
broadly is a tiny small portion in compared to that 
computational cost in increasing depth of the stacked layer-
structure. BLS is good at classification and regression tasks 
with a small amount of training data, fast speed requirements, 
and real-time incremental learning applications. 

BLS was derived from the random vector functional link 
neural network (RVFLNN) [14], which doesn’t need gradient 
decent to update weights. Instead of using backpropagation to 
update kernels and weights in CNN, broad learning updates 
weights of feature-node layer and enhancement-node layer by 
using the pseudoinverse method. Those node layers in BLS are 
different from layers in deep neural network, since feature-
node layer and enhancement-node layer are not coupled and 
network structure is concise. Without hierarchically cascaded 
connections, computation speed of feature-node and 
enhancement-node layers is much faster than deep neural 
network speed. Both feature-nodes and enhancement-nodes 
are inputs of the neural network, which can be expanded to 
contain new-incoming data or incremental increase of 
randomly mapped features. BLS is different from Extreme 
Learning Machine (ELM) [15], since there are connections 
between input and output layers in BLS but ELM has hidden 
layers between both of input and output layers. 

III. BROAD LEARNING SYSTEM FOR GRAPPA 

RECONSTRUCTION 

The characteristics of broad learning system make it 
possible to reconstruct missing k-space data through training 
an interpolation model with a small amount data. A framework 
of the proposed BLS based GRAPPA reconstruction is 
presented in Figure 1. ACS data and undersampled k-space 
data are input into the neural network in autocalibration phase 
and interpolation phase, respectively. The output layer has 
ACS data in autocalibration phase and estimations for missing 
k-space data in interpolation phase. 

 

Figure 1.  Framework of broad learning system for GRAPPA reconstruction. 

A.  Feature-Node Layer Generated from k-space Data 

Autocalibration signal data is acquired from central k-
space for GRAPPA reconstruction. ACS data are assigned to 
input and output layers of BLS for training the regression 
model. A linear transformation is applied on ACS data and 
then fed into feature-node layers as inputs of BLS network. 
Linear transformation makes raw k-space data in the mapped 
feature space. Each feature node Z is generated by a linear 
feature mapping by the random weights We with proper 
dimensions as the following equation: 

𝑍𝑖 = ∅(𝑋𝑊𝑒𝑖
+ 𝛽𝑒𝑖

),  𝑖 = 1, … , 𝑝                    (2) 

, where ∅ is the linear mapping that transforms input k-space 
data 𝑋  into mapped features, β is supposed to be randomly 
generated with the same distribution of We. The BLS takes the 
advantages of sparse autoencoder characteristics to produce 
the better features. 

Since k-space data are complex values rather than real 
values, those complex values are directly fed into BLS 
network without changing magnitude and phase information 
in the proposed method. Unlike deep learning based pMRI 
reconstruction which used MRI databases acquired from 
different hardware configurations, only acquired ACS data 
during the scan are used as training data to be fed into BLS 
network and then missing k-space data are interoperated using 
undersampled k-space data. Both training data and testing data 
are acquired from the same scan, and therefore they have the 
same distributions and anatomical areas. 

B. Nonlinearity Produced by Enhancement Nodes 

Since the feature nodes are generated by a linear transform 

of the original input k-space data, enhancement nodes can 

provide nonlinear information to characterize nonlinear noise 

and outliers in k-space data. Since nonlinear relationship 

between undersampled k-space data and missing data can 

improve GRAPPA reconstruction quality [16], enhancement-

node layer incorporating nonlinearity in regression may also 

improve interpolation accuracy and enhance reconstruction 

quality. For this reason, enhancement nodes add nonlinearity 

into the GRAPPA interpolation process and may improve 

reconstruction quality. 
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Feature nodes are nonlinear transformed into enhancement 

nodes as 

𝐻𝑞 = 𝜉 (𝑍𝑝𝑊ℎ𝑞
+ 𝛽𝑒𝑞

)                          (3) 

, where 𝜉  is a nonlinear activation function [18], and 𝑊ℎ𝑞
 

represents enhancement weight matrix with bias function 𝛽𝑒𝑞
. 

Nonlinearity is incorporated in Equation (3) to increase 

approximation capability. Different from feature nodes, 

enhancement nodes don’t have sparse representation. 

Enhancement nodes enhance representation ability to describe 

input data and make accurate interpolation. All feature nodes 

and enhancement nodes are connected to output layers, and 

those connection weights can be computed by using Ridge 

regression of the pseudoinverse. Through broad expansion in 

feature nodes and enhancement nodes, incremental learning 

can be developed by adding new connections and updated their 

weights. 

C. Pseudoinverse for Reconstruction Missing k-space Data 

To obtain the mapping between input and output layers, 
pseudoinverse is used in BLS to compute weights. Let’s make 
𝐴 represent the expanded input matrix consisting of all input 
k-space data mapped vectors combined with enhancement 
components. If a new enhancement node is added to the 
network, it is equivalent that a new column is added to the 
original input matrix An, which has the n × m pattern matrix 
structure [13]. The n represents total number of feature- and 
enhancement-nodes, and m is the number of input patterns. 
The new pattern matrix An+1 by adding a new enhancement 
node can be represented as  

 𝐴𝑛+1 ≜ [𝐴𝑛|𝑎] 

The pseudoinverse of new pattern matrix is calculated by 

𝐴𝑛+1
+ = [

𝐴𝑛
+−𝑑𝑏𝑇

𝑏𝑇 ]                                (5) 

, where 𝑑 = 𝐴𝑛
+𝑎, and  

𝑏𝑇 = {
(𝑐)+                                      𝑖𝑓 𝑐 ≠ 0

(1 + 𝑑𝑇𝑑)−1𝑑𝑇𝐴𝑛 
+             𝑖𝑓 𝑐 = 0

            (6) 

, and 𝑐 = 𝑎 − 𝐴𝑛𝑑. The new weights are calculated as 

𝑊𝑛+1 = [
𝑊𝑛−𝑑𝑏𝑇𝑌𝑛

𝑏𝑇𝑌𝑛
]                              (7) 

, where 𝑌𝑛 are output data, and 𝑊𝑛+1 are updated weights after 
new enhancement nodes are added based on previous weights 
𝑊𝑛. 

Weights of connections between output layers and both of 
feature nodes and enhancement nodes are calculated and 
updated by pseudoinverse. Missing k-space data are estimated 
and filled out to produce full k-space data. Inverse Fourier 
transform is applied on each coil to generate each coil image 
and then all coil images are combined together for 
reconstructing the final image, as the traditional GRAPPA 
does. 

IV. EXPERIMENTAL RESULTS 

The proposed BLS based GRAPPA reconstruction is 
evaluated by two in-vivo datasets. The reconstructed images 
are compared to reference images and the traditional GRAPPA 

reconstructed images. The experimental procedures involving 
human subjects described in this paper were approved by the 
Institutional Review Board. 

A. Datasets 

The first dataset contains cardiac images were acquired 
using a 2D trueFISP sequence (TE/TR 1.87/29.9 ms, 
bandwidth 930 Hz/pixel, 50 degree flip angle, 6mm slice 
thickness, 34 cm FOV in readout direction, 256 x 216 
acquisition matrix) with a 4-channel cardiac coil. It is 
undersampled by reduction factor 4 and 64 ACS lines. The 
reconstruction kernel size is 4 x 15. The second one is a 4-coil 
brain dataset with the reduction factor 2 and 32 ACS lines. The 
reconstruction kernel size is 4 x 61. The reconstruction code 
was implemented in MATLAB (Natick, MA).  

B. Reconstruction Quality Evaluation 

The first cardiac MRI data are reconstructed by both of the 
traditional GRAPPA as shown in Figure 2(b) and the proposed 
broad learning system-based GRAPPA reconstruction as 
shown in Figure 2(c). Fully sampled k-space was 
reconstructed as the reference image in Figure 2(a). A patch is 
extracted and evaluated for reconstruction performance 
comparison. It can be seen that the proposed BLS based 
GRAPPA reconstruction outperforms the traditional 
GRAPPA reconstruction by suppressing noise. 

(a) 

(b) (c) 

(d)  (e)  (f) 

Figure 2.  Cardiac MRI reconstruction with the reference image (a), the 
traditional GRAPPA (b) and the proposed BLS based GRAPPA reconstruction 
(c). Patches are extracted from reference image (d), GRAPPA reconstruction 
(e), and BLS based GRAPPA reconstruction (f) for evaluating reconstruction 
quality. 

The second brain dataset was reconstructed by both of the 
traditional GRAPPA in Figure 3(b) and the proposed BLS 
based GRAPPA reconstruction in Figure 3(c), respectively. 
The fully sampled k-space was also reconstructed as the 
reference image as shown in Figure 3(a). The BLS based 
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GRAPPA reconstruction also has higher SNR than that of the 
traditional GRAPPA reconstruction. 

(a) 

(b) (c) 

(d)  (e)  (f) 

Figure 3.  Brain MRI reconstruction with the reference image (a), the 
traditional GRAPPA (b) and the proposed BLS based GRAPPA reconstruction 
(c). Patches are extracted from reference image (d), GRAPPA reconstruction 
(e), and BLS based GRAPPA reconstruction (f) for evaluating reconstruction 
quality. 

The Normalized Mean Square Error (NMSE) are calculated 

for the traditional GRAPPA reconstruction and BLS based 

GRAPPA reconstruction, where the latter one is lower than 

GRAPPA reconstruction NMSE for cardiac and brain images, 

as shown in the Table I. 

TABLE I.  NORMALIZED MEAN SQUARE ERROR (NMSE) OF 

RECONSTRUCTIONS 

 
Normalized Mean Square Errors 

Cardiac Reconstruction Brain Reconstruction 

GRAPPA 2.4323e-05 1.0554e-05 

BLS 1.3076e-05 5.4897e-06 

 

C. Computational Costs 

For the cardiac reconstruction, the traditional GRAPPA and 

BLS need 4.5 seconds and 229.3 seconds, respectively, 

respectively. Furthermore, the computational times are 28.6 

seconds and 191.9 seconds for GRAPPA reconstruction and 

BLS based GRAPPA reconstruction of the brain dataset. 

Although BLS based reconstruction is longer than the 

traditional GRAPPA reconstruction, it is still faster than 

training time of MRI reconstruction using deep learning 

approaches which require a large amount of MRI data. 

V. CONCLUSION 

In conclusion, the broad learning system is studied and 

applied on GRAPPA reconstruction. Broad learning doesn’t 

need deep architectures of deep learning models, and 

therefore reduce computational costs of training a model on a 

large amount of MRI data, as well as avoid a large 

hyperparameter turning workload. In the proposed method, 

training data and testing data acquired from the same scan of 

with the same configuration profile to avoid transfer learning 

between training data and testing data. The proposed method 

is able to enhance reconstruction quality by reducing noise in 

compared to the traditional GRAPPA reconstruction. Future 

work will focus on dynamic parallel MRI reconstruction with 

incremental learning characteristics of broad learning system. 

REFERENCES 

[1] Z.P. Liang and P.C. Lauterbur, “Principles of magnetic resonance imaging: a 

signal processing perspective,” 1st ed.  Wiley-IEEE Press, 1999. 

[2] J. Hamilton, D. Franson, and N. Seiberlich, “Recent advances in parallel imaging 

for MRI,” Prog. Nucl. Magn. Reson. Spectrosc., vol. 101. Pp.71-95, 2017. 

[3] K.P. Pruessmann, M. Weiger, M.B. Scheidegger, P. Boesiger, “SENSE: 

sensitivity encoding for fast MRI,” Magn. Reson. Med., vol. 42, no. 5, pp. 952-

962, 1999. 

[4] M.A. Griswold, P.M. Jakob, R.M. Heidemann, N. Mathias, V. Jellus, J. Wang, 

B.  Kiefer, and A.  Haase, “Generalized autocalibrating partially parallel 

acquisitions (GRAPPA),” Magn.  Reson.  Med., vol.  47, pp. 1202-1210, 2002. 

[5] M.  Lustig and J.M.  Pauly, “SPIRiT:  Iterative  self-consistent  parallelimaging  

reconstruction  from  arbitrary  K-space,” Magn.  Reson.  Med., vol. 64, no. 2, 

pp. 457–471, 2010. 

[6] M. Akçakaya, S. Moeller, S. Weingärtner, and K. Uğurbil, “SENSE: sensitivity 

encoding for fast MRI,” Magn. Reson. Med., vol. 81, no. 1, pp. 439-453, 2019. 

[7] J.Y. Cheng, M. Mardani, M. T. Alley, J.M. Pauly, and S.S. Vasanawala. “Deep-

SPIRiT: generalized parallel imaging using deep convolutional neural 

networks,” In Proc. 26th Annual Meeting of the ISMRM, Paris, France, 2018. 

[8] Y. Han, L. Sunwoo, and J. C. Ye, “k-space deep learning for accelerated MRI,” 

IEEE Trans. Medical Imaging, vol. 39, no. 2, pp. 377-386, 2020. 

[9] D. Liang, J. Cheng, Z. Ke, and L. Ying, “Deep magnetic resonance image 

reconstruction: inverse problems meet neural networks,” IEEE Signal 

Processing Magazine, vol. 37, no. 1, pp. 141-151, 2020. 

[10] F. Knoll, et al., “fastMRI: a publicly available raw k-space and DICOM dataset 

of knee images for accelerated MR image reconstruction using machine 

learning,” Radiol Artif Intell., PMCID: PMC6996599, 2020. 

[11] S.J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowledge 

and Data Engineering, vol. 22, no. 10, pp. 1345-1359, 2010. 

[12] F. Knoll, K. Hammernik, E. Kobler, T. Pock, M.P. Recht, and D.K. Sodickson, 

“Assessment of the generalization of learned image reconstruction and the 

potential for transfer learning,” Magn. Reson. Med., vol. 81, pp. 116-128, Jan 

2019. 

[13] C.L.P. Chen and Z. Liu, “Broad learning system: an effective and efficient 

incremental learning system without the need for deep architecture,” IEEE 

Trans. Neural Networks and Learning Systems, vol. 29, no. 1, pp. 10-24, 2017. 

[14] Y.H.  Pao and Y.  Takefuji, “Functional-link net computing: theory, system 

architecture, and functionalities,” Computer, vol.  25, no.  5, pp. 76-79, 1992. 

[15] G. B. Huang, Q. Y. Zhu, , and C. K. Siew, “Extreme learning machine: theory 

and applications,” Neurocomputing, vol. 70, no. 1-3, pp.489-501, 2006. 

[16] Y. Chang, D. Liang, and L Ying, “Nonlinear GRAPPA: A kernel approach to 

parallel MRI reconstruction,” Magn. Reson. Med., vol. 68, no. 3, pp. 730-740, 

2012. 

[17] J. Lyu, Y. Chang, and L Ying, “Fast GRAPPA reconstruction with random 

projection,” Magn. Reson. Med., vol. 74, no. 1, pp. 71-80, 2015. 

[18] C.L.P. Chen and J.Z. Wan, “A rapid learning and dynamic stepwise updating 

algorithm for flat neural networks and the application to time-series prediction,” 

IEEE Trans. Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 29, no. 

1, pp. 62-72, 1999. 

2707


