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Abstract— The cyclical and progressively decreasing 

dynamics of electroencephalogram (EEG) based slow-wave 

activity (SWA) during sleep reflects the homeostatic component 

of sleep-wake regulation. The dynamic changes of heart rate 

(HR) and heart rate variability (HRV) indices during sleep also 

exhibit quasi-cyclic trends that appear to correlate with SWA. 

This article proposes a model to characterize the relationship 

between SWA, HR and HRV in the polar-coordinate (r-θ) 

domain. Polar coordinates are particularly well-suited to model 

cyclic shapes with simple (linear) equations in the r-θ plane. 

Group-level analyses and individual-level ones of the 

correlations between the polar-coordinate transformations of 

SWA and HR reveal R2 values of 0.99 and 0.95 respectively. 

Given that, HR and HRV can be estimated in less obtrusive ways 

compared to EEG. This research offers relevant options to 

conveniently monitor sleep SWA. 

 
Clinical Relevance— Slow wave activity is a marker of sleep 

restoration that most prominently manifests in the EEG. This 

research suggests that an electrocardiography (ECG)-based 

non-linear model can approximate a polar-coordinate version of 

SWA. Since ECG correlates can be unobtrusively acquired 

during sleep, these results suggest that practical SWA 

monitoring can be achieved through cardiac activity 

measurements. 

I. INTRODUCTION 

Recent research on the function of sleep has led to results 
identifying the central nervous system (CNS), mainly the 
brain, among the primary beneficiaries of sleep. The synaptic 
homeostasis hypothesis [1] postulates that sleep renormalizes 
synaptic energy to prepare the brain for subsequent 
wakefulness. Xie et al. [2] and Fultz et al. [3] propose that 
sleep, mostly deep non-rapid eye movement (NREM) sleep, 
drives metabolic clearance from the adult brain, and [4] 
elaborates on the idea that “sleep is of the brain, by the brain, 
and for the brain.” The autonomic nervous system (ANS) also 
manifests specific patterns of activity depending on the sleep 
stage; these can be quantified by analysis of changes in heart-
rate (HR) and heart rate variability (HRV) during sleep [5]. 

Evidence for the coupling of CNS and ANS activities 
during sleep is reviewed in [6]; multiple levels of CNS-ANS 
interaction are identified: 1) at the sleep cycle level 
characterized by the interaction between cyclic CNS 
oscillations and co-occurring changes in peripheral ANS 
activity, and 2) at a shorter time scale where phasic CNS 

events (such as K-complexes or μ-arousals) are accompanied 
by ANS fluctuations. 
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Electroencephalogram (EEG) and electrocardiogram 
(ECG) signals are prominent indicators of CNS and ANS 
activity, respectively. These signals are essential components 
of polysomnography (PSG), the gold-standard method for 
objectively studying sleep. A number of attempts have been 
made to jointly analyze ECG and EEG signals to elucidate the 
mechanisms of ANS and CNS association using PSG data. For 
instance, the interbeat autocorrelation coefficient was 
associated with changes in mean EEG frequency [7], and 
decreases in interbeat autocorrelation preceded increases in 
EEG delta power (0.5–4 Hz) [8]. Furthermore, NREM sleep 
promotes increases in EEG delta power and a decrease in 
blood pressure [9]. 

This article considers ECG-based HR and HRV estimated 
at the 30-second temporal window level (epoch) and their 
relationship with EEG power in the delta band (slow wave 
activity or SWA).  

The focus on SWA is motivated by its role as a marker of 
sleep need and sleep restoration [10]. From the sleep need 
perspective, the dynamics of SWA reflect that of process “S” 
in the two-process model [11]. SWA accumulates during 
NREM sleep, declines before the onset of rapid eye movement 
(REM) sleep, and remains low during REM; the level of 
increase in successive NREM episodes gets progressively 
lower [12] (Figure 1). Higher SWA has been linked with 
higher restorative sleep. Low SWA appears to correlate with 
shallower sleep, and SWA naturally declines with aging [13]. 

The possibility of identifying ECG-based metrics that 
meaningfully correlate with SWA enables practical options to 
monitor sleep restoration, as ECG surrogates can be estimated 
using unobtrusive technologies including ballistocardiography 
[14, 15] and capacitive coupling [16]. 

II. METHODS 

Forty-five self-reported healthy sleepers (25F/20M; 41.2 ± 
10.5 years old; body mass index [kg/m2] 25.9±4.4; 
apnea/hypopnea index [AHI] 6.53±15.1 [events/h]) consented 
to participate in a single sleep lab study to assess the accuracy 
of sleep metrics obtained from a Sleep Number smart bed 
against PSG-based sleep metrics. The study was categorized 
as “exempt status” by the Institutional Review Board of the 
University of Chicago. The main results of that research are 
under consideration for publication in a sleep specialized 
journal.  

In this paper we used PSG signals to model the interaction 
between EEG-derived SWA and ECG-derived HR and HRV. 
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EEG and ECG signals were acquired at sampling frequencies 
of 200 Hz and 500 Hz, respectively. 

PSG sleep stages were independently scored by three 
registered sleep technicians based on the AASM guidelines 
[17] and the sleep stage for each epoch  was chosen as the stage 
scored by at least 2 of the 3 technicians. In the case of 
disagreement among the three technicians, a sleep expert (GG) 
made the final determination of the sleep stage. This process 
resulted in a consensus hypnogram per PSG recording used in 
this paper. The hypnogram consisted of 5 stages including 
wake (W), REM (R), NREM1 (N1), NREM2 (N2), and 
NREM3 (N3). AHI was determined from PSG signals by the 
sleep technician from Lakeland Sleep Center. AHI < 5 
indicated an absence of apnea. 

 

Figure 1. Consensus hypnogram (top) along with sleep stage dependent 

changes in HR (2nd panel), SDNN (3rd panel), PNN50 (4th panel) and SWA 

(bottom panel). 

A. Heart rate and heart rate variability analysis  

HR and temporal HRV were estimated for each PSG study 
using the ECG signal. R-peaks in the ECG were detected using 
the QRS detection algorithm in [18]. RR intervals were 
calculated as the time difference between the timing of 
consecutive R-peaks. Due to potential R-peak detection 
inaccuracies, RR intervals in the 1st percentile and above the 
99th percentile were discarded. If applicable, RR segments 
shorter than 300 msec or longer than 2000 msec were also 
discarded. This resulted in a sequence of NN intervals 
(“normal” RR intervals). 

HR and HRV values were calculated for each 5-minute 
long window as recommended [5, 19]. Let 𝑁𝑁1, … , 𝑁𝑁𝑛 be 
the sequence of NN intervals (in msec) in a given 5-minute 
window. Then, HR (in beats per minute) associated with that 
window is 60000/𝑚𝑒𝑑𝑖𝑎𝑛({𝑁𝑁1, … , 𝑁𝑁𝑛}). The median 
operator was used to reduce sensitivity against outlier NN 
values. 

Two temporal HRV metrics were calculated, SDNN 
(standard deviation of NN intervals) and PNN50 (the percent 
of successive NN intervals that differ by more than 50 msec). 
The choice of time domain over frequency domain HR 
analyses was motivated by the fact that time domain metrics 
are associated with lower estimation errors [20]. 

To align with hypnogram- and EEG-based metrics, epoch 
level resolution (i.e., 30 seconds) of HR and HRV were 
obtained through linear up-sampling by a factor of 10 (Figure 
1).  

B. SWA 

SWA was calculated from the frontal EEG channel F3. The 

choice of a single EEG signal to perform this analysis was 

motivated by: 1) the fact that SWA manifests more 

prominently on frontal EEG sites, 2) SWA trends are similar 

across all EEG sites [21], and 3) simplicity of analysis.  

The EEG signal was first band-pass filtered in the 0.05 to 40 

Hz frequency band using a second-order Butterworth filter. 

For each noise-free epoch that did not contain any annotated 

micro-arousal, the EEG power spectrum density (PSD) was 

estimated using the Welch method [22] using a 10-sec 

Hanning window and 5-sec overlap. The PSD had a 0.1 Hz 

resolution and SWA was calculated by integrating the PSD 

from 0.5 to 4 Hz (Figure 1). 

C.  HR and HRV versus SWA analysis 

The curves in Figure 1 suggest a relationship between SWA 

and HR/HRV. Indeed, during NREM, HR decreases, SDNN 

and PNN50 increase and SWA increases. During REM, SWA 

decreases, HR increases and PNN50 decreases.  
The (log-log) plots represented in Figure 2 show a cyclic 

relationship between HR/HRV and SWA. The cyclical nature 
of the relationship is more noticeable for HR vs SWA and 
SDNN vs SWA than for PNN50 vs SWA. The shape of the 
cycle is reminiscent of a collapsing spiral and appears to be 
due to the cyclic and progressively decreasing behavior of 
SWA, which is mirrored by HR (Figure 1). 

 

Figure 2. Log-log plots. Top:  HR vs SWA. Middle: SDNN vs SWA. Bottom: 

PNN50 vs SWA. 

Cyclic-shape curves can be conveniently modelled in polar 

coordinates. For instance, the equation of an Archimedean 

spiral is: 𝑟 = 𝑎 + 𝑏 × 𝜃 in the plane (r, θ). Therefore, the 

modelling of HR/HRV vs SWA was performed in polar 

coordinates using the transformation described in Equation 1. 

 

𝑟𝐶 = √𝑙𝑜𝑔( 𝑆𝑊𝐴)2 + 𝑙𝑜𝑔( 𝐶)2, 

𝜃𝐶 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑙𝑜𝑔( 𝐶)

𝑙𝑜𝑔( 𝑆𝑊𝐴)
), 

Equation 1 

 

where C stands for HR, SDNN, or PNN50. The subsequent 

step estimated the coefficients of the model 𝑟𝐶 = 𝑎 + 𝑏𝜃𝐶 

through linear regression along with the corresponding R2 

value. 
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III. RESULTS 

A.  Group-level results 

For the group-level analysis, the 30-sec resolution 
temporal curves for HR, SDNN, PNN50, and SWA (Figure 1) 
for each PSG study were averaged in the time domain by 
aligning them with respect to sleep onset. This average is 
referred to as group-level average. 

The group-level averages of HR, SDNN, and PNN50 were 
analyzed vs the group-level average SWA using polar 
coordinates (Equation 1; Figure 3). Linear regression models 
were then fit for each HR/HRV metric vs SWA. The results 
reported on Table 1 suggest that the linear models in the polar 
domain (i.e., spirals in the Cartesian domain) fit particularly 
well the relationships: (HR vs SWA; R2=0.99) and (SDNN vs 
SWA; R2=0.96). Illustration of the accuracy of the model fit, 
at the group-level in the SWA-HR plane is shown in  

Figure 4. 

 

Figure 3. Group level analysis. Top: HR vs SWA. Middle: SDNN vs SWA. 

Bottom: PNN50 vs SWA. 

B. Individual-level results 

A similar modeling analysis was applied to individual-level 
results, i.e., using the individual SWA, HR, and HRV curves. 
The statistics of individual-level model parameters are 
reported in Table 2. 

Consistent with the group-level analysis, the highest 
average R2 value was obtained for the association between HR 
and SWA, i.e., 𝑟𝐻𝑅and 𝜃𝐻𝑅. The lowest R2 (=0.19) was for the 
PNN50-SWA association. 

 
 

Figure 4. Group-level model fit for HR vs SWA. 

IV. DISCUSSION 

EEG power in the delta band (SWA) is a marker of the 
homeostatic sleep need of the two-process model of 
sleep/wake regulation. Because of the close interaction during 
sleep between the CNS and the ANS, it is reasonable to 
hypothesize that the activity of the latter can also reflect sleep 
need dissipation. Such insight motivated this investigation 
where SWA vs HR and time domain HRV (SDNN and 
PNN50) metrics were analyzed. 

TABLE 1. GROUP-LEVEL RESULTS. 

SWA 

versus 
Model R2 

HR 𝑟𝐻𝑅 = 17.63 − 17.72𝜃𝐻𝑅 0.99 

SDNN 𝑟𝑆𝐷𝑁𝑁 = 16.33 − 15.98𝜃𝑆𝐷𝑁𝑁 0.96 

PNN50 𝑟𝑃𝑁𝑁50 = 13.22 − 13.40𝜃𝑃𝑁𝑁50 0.35 

 

The polar coordinate domain appeared to be well suited to 
model the relationships SWA-HR, SWA-SDNN, and SWA-
PNN50 at both group and individual levels. This type of 
transformation was inspired by the cyclic and spiral-like 
shapes of the curves in Figure 2, and the fact that simple, linear 
equations in the polar coordinate system can represent spiral-
like curves. 

The high R2 of the group-level and individual-level 
correlations of the polar transformation of SWA and HR 
suggests that changes in HR are associated with changes in 
SWA during sleep. This is in line with recent research showing 
that automatic sleep staging can be accomplished using the 
instantaneous HR [23] or features derived thereof [24]. It is 
relevant to note that the parameters of the HR-SWA model in 
Table 2 (i.e., 𝑎𝐻𝑅and 𝑏𝐻𝑅) show a low degree of inter-
individual variability. Indeed, the respective standard 
deviations are 6 and 12 % of the average values, respectively. 
This suggests that a generic, subject-independent model may 
exist. 

TABLE 2. INDIVIDUAL-LEVEL RESULTS. 

Model: 𝑟𝐻𝑅 = 𝑎𝐻𝑅 + 𝑏𝐻𝑅𝜃𝐻𝑅 

𝑎𝐻𝑅 𝑏𝐻𝑅 𝑅2 

16.23 ± 0.97 -14.86 ± 1.83 0.95 ± 0.08 

Model: 𝑟𝑆𝐷𝑁𝑁 = 𝑎𝑆𝐷𝑁𝑁 + 𝑏𝑆𝐷𝑁𝑁𝜃𝑆𝐷𝑁𝑁 

𝑎𝑆𝐷𝑁𝑁 𝑏𝑆𝐷𝑁𝑁 𝑅2 

13.66 ± 1.72  -10.85 ± 3.08 0.66 ± 0.18 

Model: 𝑟𝑃𝑁𝑁50 = 𝑎𝑃𝑁𝑁50 + 𝑏𝑃𝑁𝑁50𝜃𝑃𝑁𝑁50 

𝑎𝑃𝑁𝑁50 𝑏𝑃𝑁𝑁50 𝑅2 

9.63 ± 3.19  -3.03 ± 6.59 0.19 ± 0.24 

For SDNN, there is a substantial difference between the 
goodness-of-fit achieved by the group-level model (R2 = 0.96) 
and that by the individual-level model (R2 = 0.66 on average). 
For PNN50, neither the group-level nor the individual-level 
results in R2 exceeded 0.5. 
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Higher noise in the estimation of SDNN and PNN50 may 
explain the low R2 values of SDNN vs SWA and PNN50 vs 
SWA models. Indeed, the R2 associated with the group-level 
analysis is higher than that of the individual-level analysis and 
the former, being an average, has a lower noise level compared 
to the latter. An alternative explanation to the low R2 values 
for SDNN and PNN50 is that time-domain HRV metrics based 
on absolute differences of NN intervals are influenced by heart 
rate changes; however, the HR through sleep is certainly not 
stationary, as can be seen in Figure 1. A possible strategy to 
correct for this effect is to de-trend the NN sequence prior to 
the estimation of SDNN and PNN50. 

V. CONCLUSION 

This research suggests that a non-linear model resulting 
from a transformation in polar coordinates of the SWA-HR 
space fits well with the dynamics of SWA and HR during 
sleep. SWA reflects sleep need dissipation, and as such, 
constitutes a marker for sleep restoration.  

By definition SWA requires analysis by EEG. Our results 
show that SWA may be approximated by cardiac metrics that 
can be estimated through unobtrusive and contact-free means 
(e.g., ballistocardiography or capacitive sensing). 

The model presented in this paper has considered the SWA 
from a single EEG signal. Future research should contemplate 
multivariate SWA models (from several EEG channels) and 
multiple cardiac metrics. While frequency-domain HRV 
metrics are presumably associated with higher estimation 
errors [20], these should also be considered to more precisely 
investigate the sympathovagal balance. A substantially larger 
number of PSG recordings needs to be used to formally (within 
a cross-validation procedure) quantify the accuracy of the 
model presented in this article. 
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