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Abstract— Running gait assessment for shoe type 

recommendation to avoid injury often takes place within 

commercial premises. That is not representative of a natural 

running environment and may influence normal/usual running 

characteristics. Typically, assessments are costly and performed 

by an untrained biomechanist or physiotherapist. Thus, use of a 

low-cost assessment of running gait to recommend shoe type is 

warranted. Indeed, the recent impact of COVID has heightened 

the need for a shift toward remote assessment in general due to 

social-distancing guidelines and restriction of movement to 

bespoke assessment facilities. Mymo is a Bluetooth-enabled, 

inertial measurement unit (IMU) wearable worn on the foot. The 

wearable transmits inertial data via a smartphone application to 

the Cloud, where algorithms work to recommend a running shoe 

based upon the users/runner’s pronation and foot-strike 

location/pattern. Here, an additional algorithm is presented to 

quantify ground contact time and swing/flight time within the 

Mymo platform to further inform the assessment of a runner’s 

gait. A large cohort of healthy adult and adolescents (n=203, 

91M:112F) were recruited to run on a treadmill while wearing 

the Mymo wearable. Validity of the inertial-based algorithm to 

quantify ground contact time was established through manual 

labelling of reference standard ground truth video data, with a 

presented accuracy between 96.6-98.7% across the two classes 

with respect to each foot. 

 
Clinical Relevance—This establishes the validity of a ground 

contact and swing times for runner with a low-cost IoT wearable. 

I. INTRODUCTION 

Recreational and competitive running is popular, due to its 

low-cost accessibility, social community and significant 

health benefits [1]. As a runner looks to improve, multiple 

factors must be considered to maximize their running 

performance. For example, a runner could adopt High 

Intensity Interval Training (HIIT)-based exercises for 

endurance and muscle strengthening [2]. A runner could also 

optimize their ground contact time (GCT, time the foot is in 

contact with the ground) to minimize the metabolic cost of 

running [3] and/or decrease the rate of stiffness experienced 

over long periods of running [4], which can reduce risk of 

injury [5]. However, there are few methods of measuring 

intricate running gait characteristics such as GCT outside of a 

controlled setting, where supervision and observation with 

expensive equipment is often required. Moreover, traditional 

running gait assessment methods typically require manual 
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visual analysis of a runner’s kinematics, which can be subject 

to bias or adoption of inadequate techniques [6].  

Wearable technology has allowed for a more personalized 

data-driven approach to running gait analysis, beyond the 

confines of specialist environments [7]. Consumer-grade 

products show promise in quantifying various running gait 

features, including step rate and vertical ground reaction force 

[8]. Wearable devices can take shape in many forms, with 

common technologies such as Pressure-Sensitive Resistors 

(PSR) [9, 10] and Inertial Measurement Units (IMU) [11, 12] 

often found within. Furthermore, the proliferation and 

integration of Cloud-computing [13] through the ubiquity of 

smartphones, enables complex, computationally expensive 

data-analysis in any environment. This is exemplified through 

the Internet of Things (IoT), ensuring feasibility of remote 

running gait assessment to everyone, everywhere. 

This study implements a low-cost, Cloud-based solution to 

quantify GCT and swing time (ST) of runners with a foot-

mounted IMU tethered to a smartphone application via 

Bluetooth. This work extends the functionality of a 

commercial device (Mymo) by proposing an algorithm and 

validating it with a large dataset gathered from a synchronized 

gold/reference standard. The work will enable consumers to 

better understand their running gait characteristics from their 

habitual environment. 

II. RELATED WORK 

A.  IMU-based gait analysis 

Use of IMUs in healthcare and bioinformatic applications are 

becoming more common as a result of the quality of data 

produced in comparison to their PSR counterpart. Their 

increasingly small form factor and low-cost allows for easily 

scalable and remote deployment [14, 15]. Despite their low-

cost, studies have shown them to perform in equivalent 

accuracy to their respective gold-standards in running gait 

assessment [16, 17]. 

IMUs are well suited to running analysis due to their typical 

inclusion of both accelerometer and gyroscope units. For 

instance, accelerometers excel at the detection of initial 

contact (IC) and final contact (FC, or toe-off, TO) events 

through observation of acceleration in multiple planes, 

segmenting gait events for quantification of spatial and 

temporal characteristics [18]. Equally, gyroscopes provide 
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3D-angular velocity, allowing for the understanding of the 

rotational kinematics a runner may exhibit [19]. 

B. Ground contact time (GCT) 

GCT has been shown to be critical in improving a runner’s 

biomechanical economy [4, 20]. In general, GCT is defined 

through the distance between identified points of IC (the point 

where the foot first strikes the ground during a stride) and TO, 

the point where the foot leaves the ground [3]. Quantifying 

GCT from an IMU, therefore, must rely upon known gait 

segmentation methods for the identification of IC and TO 

events. 

It is shown that different levels of support-cushioning 

technology within a running shoe can adversely affect an 

individual’s GCT [21]. For example, shoes utilizing Air® 

chamber technology often increase GCT, whereas ‘barefoot’ 

style shoes exhibit a shorter GCT.  

C. Swing time 

Swing time (ST) refers to the period of time the foot spends 

off  the ground during a stride [22], often described as the 

opposite of GCT. Although not as critical a measure as GCT, 

understanding a runner’s ST can lead to indirect gains in 

running performance in relation to oxygen-use optimization 

through increased cadence as a result of less time spent in the 

air [23]. 

D. Running gait analysis and shoe recommendation 

Mymo is a product that uses an IoT-enabled foot-mounted 

IMU to recommend running shoes based on a runner’s gait 

(www.mymo.co.uk). Informed by a runner’s pronation and 

foot-strike location extracted through a zero-crossing gradient 

maxima identification algorithm, the system utilizes deep 

learning to recommend neutral or support cushioned running 

shoes [18]. As an extension of the latter study, providing 

runners with GCT could better inform the selection of the 

correct running shoe; i.e. a runner with slow GCT may prefer 

a shoe that allows for faster GCT such as a ‘barefoot’ shoe 

[21].  

III. METHODS 

A. Data capture and labelling 

Healthy adults and adolescents (i.e., those with no physical 

impairments and who could run for a sustained period of time) 

were recruited from community-based leisure centers and 

running clubs in the Northeast of England. Ethical approval 

was granted by Northumbria University Research Ethics 

Committee (Ref: 21603). All participants gave verbal consent 

before providing data during treadmill-based testing. 

Participants were asked to wear the Mymo wearable as per 

the manufacturer’s guidelines: on each foot via a neoprene 

sock while they ran on a treadmill, mounting the IMU to the 

talus joint. Participants lower-extremities were then video 

recorded while running at 5mph/8kmph from three angles 

(front/side/rear) with a frame rate of 240FPS to allow for a 

high-resolution frame-by-frame analysis of the runner’s GCT 

and ST. Participants ran for a period of 1 minute/foot, 

providing >7200 data points per runner (IMU polling at 60Hz, 

1 minute/foot), Fig 1. 

 Upon completion of data capture, each video was manually 

labelled by a trained researcher, such that videos were loaded 

into video-processing software (VLC), where the frames 

between points of IC and TO events were counted and 

averaged for every stride in the footage. Videos were then 

cross-referenced between each data stream, wherein (i) the 

timestamp of IC is located, (ii) the timestamp of TO is located, 

(iii) GCT is calculated as the difference between these two 

points and (iv) ST was quantified as the distance from TO to 

the proceeding IC event. The process was repeated for each 

stride in the signal and averaged to provide a final GCT and 

ST of the runner in seconds compared video labels. 

 

B. Gait signal filtering and segmentation 

Inertial signals from the Mymo IMU were filtered by a 

Butterworth filter performing at 60Hz with a cutoff frequency 

of 5Hz and a sampling period of 3Hz to remove extraneous 

noise [18]. Once complete, a dynamic signal segmentation 

method utilizing zero-crossing gradient maxima detection 

was applied to the vertical acceleration (av) of the inertial 

signal to locate the points of IC within the filtered signal, 

splitting the signal into multiple gait cycles defined between 

two points of IC. 

C. Locating toe-off events 

As the proposed running gait cycle segmentation is focused 

on points of IC, to calculate GCT and ST, locations of TO 

events proceeding any given IC event are required. Inertial 

signals were compared to videos and it was identified that a 

TO event is denoted by the first negative gradient sign-change 

in av after crossing zero, Fig. 2. 

 
Figure 2: Visualization of contact and swing time calculation with 

both IC/TO identification (green and red markers respectively)  

 

 
Figure 1: Example of video capture with Mymo sensor from 

front, side and rear perspectives 
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The absolute signal of av is calculated and applied to our 

zero-crossing gradient maxima method [18] for identification 

of peaks proceeding an IC event. Peaks identified from this 

approach are then identified as TO events.  During testing, 

false positives were identified within 5Hz (0.083s) from any 

respective point of IC, causing the calculation of GCT and ST 

to significantly under-perform. In response, a 5Hz threshold 

was applied from the point of IC to ensure TO events are not 

quantified within. 

D. Calculating GCT and ST 

Where GCT is defined as the quantified time the foot spends 

on the ground (i.e., between a point of IC and TO), GCT is 

calculated such that: 

 

𝐺𝐶𝑇𝑛 =  
𝑇𝑂𝑛−𝐼𝐶𝑛

𝑆𝑅
             (1) 

where, 𝐺𝐶𝑇𝑛 is the GCT of any given stride in seconds and 

SR is the sampling rate of the device (60Hz). By normalising 

GCT into seconds, a direct comparison between the output of 

the GCT algorithm can be made against labels provided by 

video data. 

To calculate ST, the time spent off the ground, an inverse 

of the calculation was performed by evaluating the time 

between a TO event and the proceeding IC: 

 

𝑆𝑇𝑛 =  
𝐼𝐶𝑛+1−𝑇𝑂𝑛

𝑆𝑅
             (2) 

 GCT and ST are calculated for every stride in a runner’s 

signal, the mean GCT and ST is then provided to account for 

any anomalous strides within the signal. 

E. Statistical analysis 

Validating the performance of the proposed algorithms and 

their respective videos was conducted in SPSS v26. Shapiro-

Wilks tests indicated a normal distribution of all data 

(p>0.105). Consequently, Pearson’s correlation and intra-

class correlation (𝐼𝐶𝐶(2,1)) models examined absolute 

agreement between algorithms and video. As defined by Koo 

and Li [24], ICC performance was rated as poor (< 0.5), 

moderate (0.5-0.75), good (0.75-0.9) or excellent (>0.9). 

Mean differences were calculated between algorithms and 

video for descriptive purposes. 

IV. RESULTS 

203 participants were recruited and undertook the protocol 

described. No data loss occurred across the cohort of 

participants. IMU and video-recorded running data were 

gathered while participants were on a treadmill for one minute 

per-foot (2mins total) whilst wearing the Mymo wearable. 

Results were compared against the manually labelled data to 

assess the overall performance of the algorithms. 

 A. GCT and ST 

Our approach to quantify GCT and ST with a foot-mounted 

IMU performs exceptional compared to ground-truth (video) 

reference (ICC(2,1) ≥0.894), Table 1. Figure 3 illustrates the 

algorithm performance across the cohort of participants, 

displaying results within close boundaries of their respective 

video reference range, while procuring few outliers. 

Correlation and 𝐼𝐶𝐶(2,1) were excellent across left-foot 

GCT, ST and right-foot ST (≥0.952), with right-foot GCT 

classed as good (0.894), showing that the approach performs 

within low-variance of their respective video reference. 

Equally, observing the mean difference between algorithm 

output and video reference respective to class, our accuracy 

ranges from 96.6%-98.7% across all classes. 

V. DISCUSSION 

Our approach to the quantification of GCT and ST from a 

single foot-mounted IMU from Mymo, uses a zero-gradient 

crossing approach to the location and comparison of IC and 

TO events of a runner’s stride. Deployed as part of an IoT 

system, Mymo aims to provide the need for transition from 

observer-based running gait assessment, to analysis beyond 

controlled settings, i.e. natural running situations [25]. 

Our segmentation algorithms as described in previous work 

[18] effectively identify and split inertial signals into their 

respective gait cycles through the use of  standardized zero-

Table 1: Algorithm output vs. with (ground-truth) video 

Left Foot 

Gait Feature Algorithm (s) Video (s) p ICC(2,1) 

GCT 0.306 0.302 0.951 0.974 

ST 0.429 0.424 0.912 0.952 

Right Foot 

Gait Feature Algorithm (s) Video (s) p ICC(2,1) 

GCT 0.327 0.316 0.818 0.894 

ST 0.431 0.426 0.924 0.96 

Algorithm Output and Video Reference refer to mean values of 

respective outputs, GCT=Ground Contact Time, ST=Swing Time. 

p refers to Pearson's Correlation 

 

 

Figure 3: Boxplots of gait parameters for left/right foot, compared 

between algorithm and ground truth, video 
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crossing gradient maxima peak detection methods; providing 

an accurate basis for the quantification of GCT and ST. 

The approach presented here can accurately assess both 

GCT and ST of healthy runners as compared to their 

corresponding video reference data, Table 1. Our findings 

equally or outperform similar approaches in the field utilizing 

the gold-standard approach of pressure-sensitive technology 

for gait analysis [26, 27, 29]. 

A. Limitations and future work 

Participants were asked to run at a pace of 5mph/8kmph for 1 

minute/foot. The study is limited in its accuracy across 

different running speeds/abilities, due to the relationship 

between running speed and impact forces [28]. No participant 

demographics were collected here (height, weight) as those 

metrics were unlikely to impact foot orientation and inertial 

data for algorithm functionality. Future work will involve 

more detailed data collection such as complete physiological 

characteristics, variation of abilities (i.e., beginner, amateur, 

elite) as well as those recovering from injury at their 

respective comfortable speeds to ensure the approaches 

validity in a diverse cohort of healthy runners displaying a 

wide range of impact forces. Equally, testing within a range 

of locations (i.e., off the treadmill) is necessary to assess the 

validity of running gait assessment over ground. 

Video data were captured in different low-resource 

environments, exhibiting a range of brightness levels and 

running orientations (i.e., running left to right/right to left). As 

such, it is speculated that findings for right-foot GCT are 

slightly lower in accuracy because of reduced clarity 

pertaining to the exact identification of IC in darker 

environments when the right foot is behind the left. Even 

lighting across video capture settings in future work will help 

to improve identification of gait events from video streams. 

VI. CONCLUSION 

Presented is an approach for the novel application of GCT and 

ST of runners from a single foot mounted commercial IMU 

wearable. Our approach works to improve the overall 

functionality of the system (Mymo), an IoT device to help 

runners choose (in near real time) the correct running shoe by 

providing a real-world running gait assessment. The proposed 

method exhibits a high accuracy of GCT and ST across a large 

cohort of healthy runners upon a treadmill. 
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