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Abstract— Unobtrusive monitoring of driver mental states
has been regarded as an important element in improving the
safety of existing transportation systems. While many solutions
exist relying on camera-based systems for e.g., drowsiness
detection, these can be sensitive to varying lighting conditions
and to driver facial accessories, such as eye/sunglasses. In this
work, we evaluate the use of physiological signals derived from
sensors embedded directly into the steering wheel. In particular,
we are interested in monitoring driver stress levels. To achieve
this goal, we first propose a modulation spectral signal repre-
sentation to reliably extract electrocardiogram (ECG) signals
from the steering wheel sensors, thus allowing for heart rate
and heart rate variability features to be computed. When input
to a simple logistic regression classifier, we show that up to
72% accuracy can be achieved when discriminating between
stressful and non-stressful driving conditions. In particular, the
proposed modulation spectral signal representation allows for
direct quality assessment of the obtained heart rate information,
thus can provide additional intelligence to autonomous driver
monitoring systems.

I. INTRODUCTION

The National Highway Traffic Safety Administration re-
ported that in 2017 alone there were around 6.5 million
car crashes in the United States [1], almost half of which
were related to the mental state of the driver [2]. Accurate
measurement of mental states such as, workload, fatigue,
drowsiness, and stress, can improve the interaction with
adaptable intelligent systems [3], and in the case of intel-
ligent vehicles, can lead to improved road safety [4].

Automated driver status monitoring systems are often
based on cameras focusing on eye gaze, eye movement,
and pupillometry information. Such systems, however, may
compromise driver privacy, and can be sensitive to lighting
changes and to facial accessories used by drivers, such as
eye or sunglasses [5]. To overcome this, exploratory work
has been conducted with vehicle add-on devices, such as
electroencephalogram (EEG) and near-infrared spectroscopy
(NIRS) headsets [6], or sensors to measure electrocardiogram
(ECG), electrodermal activity (EDA), photoplethysmogram
(PPG) and breathing rate information [7], [8], [9], [10], [11].

Unfortunately, not all physiological signals can be mea-
sured in a non-intrusive manner and relying on drivers to
wear an additional device, such as headbands, chestbands
and/or smartwatches is unrealistic in practice. As such, sen-
sors embedded directly into the vehicle have gained interest
lately, with sensors being placed in steering wheels and
car seats being the most popular [5]. Seat-based sensors,

however, have shown to be sensitive to factors such as
driving position and driver size [12]. In turn, steering wheel
based sensors are sensitive to changes in the electrical
contact between the sensors and driver hands, as the wheel
position changes. Such artifacts can severely compromise the
usability of the obtained ECG signal.

Accurate measurement of ECG from the steering wheel is
pivotal to reliably estimate hearth rate (HR) and heart rate
variability (HRV) [13], [14]. Within the context of driving,
HRV features have found to be useful in the estimation
of driver stress [15], mental workload [16], drowsiness
and fatigue [17]. Here, we propose a new algorithm based
on a modulation spectral signal representation to obtain a
reliable estimate of the steering wheel ECG (ECGsw). To
validate our estimates, we first gauge the effectiveness of the
proposed method against HR from a portable ECG device
(henceforth termed “ground truth” ECG, ECGgt). Once the
estimated HR measures are validated, traditional HRV mea-
sures are computed and serve as input to stress detection clas-
sifiers. Results are reported per driver and across all drivers.
Additionally, the modulation spectral signal representation
provides a direct quality measure of the steering wheel ECG,
thus can be used as context for machine learning algorithms.
The remainder of this article is organized as follows. In
Section II we describe the experimental protocol, and present
the methods used for the signal processing, feature extraction
and stress-level classification. In Section III, the experimental
results are presented alongside a discussion on them. Finally,
conclusions are presented in Section IV.

II. METHODS AND MATERIALS

A. Experimental protocol

Four participants were required to drive in a car simulator
during two conditions: no-stress and stress. Each condition
consisted of two laps of a winding circuit road (5 km). In
the no-stress condition, the participants were only required
to keep their lane. In the stress condition, besides keeping
their lane, the participants were also required to follow a car
as close as possible without hitting it. In both conditions,
the participant had full control of the car (i.e., accelerator,
break, and steering wheel). Each condition had a duration of
approximately 9 minutes.
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Fig. 1. Example of artifacts due to steering wheel maneuvering. (a) Steering
wheel position. (b) ECG signals, ECGgt (blue) and ECGsw (red).

B. Signal acquisition

During the driving tasks, for each participant, seven ECG
signals were acquired from electrodes embedded in the
steering wheel [14]. In this work we made use of the
ECG5 signal in the wheel (see details in [14]), henceforth
referred to as ECGsw. Simultaneously, ground truth ECG
(ECGgt) was acquired from disposable Ag-AgCl electrodes
placed on the right clavicle and the lowest left rib. Both
ECG signals were acquired with a multimodal biosignal
amplifier (Bitbrain Technologies, Spain). In addition of the
physiological signals, time-aligned car status and position
in the winding circuit road were acquired from the car
simulator.

C. Subjective metrics

After each driving condition, the participants answered the
NASA Task Load Index (NASA-TLX) questionnaire, [18],
and provided a score between 0 and 100 about their sleepi-
ness during the driving condition. From the NASA-TLX,
the adaptive weighted workload (AWWL) was calculated, as
described in [19]. A value for arousal was calculated as 100
minus the reported sleepiness score. As result, the AWWL
and arousal scores are in the 0-100 range.

D. Signal processing, HR estimation, and HRV features

Both ECGgt and ECGsw signals were bandpass filtered
with a zero-phase FIR filter with a bandwidth from 5 to
30 Hz to remove baseline wandering and enhance the QRS
complex waveform. We first used the Pan-Tomkins algorithm
(PT) [20] to find the R-peak locations in ECGgt and
ECGsw. From these locations, the RR intervals (RRs) were
derived and the instantaneous HR was computed. The PT
algorithm, however, was shown to be very sensitive to the
large artifacts present in the ECGsw signal resultant from
the unsteady contact between the hands and the electrodes on
the steering wheel during maneuvers. As an example, Fig. 1a
shows the steering wheel position during a maneuver and
subplot b shows the ECGFgt (blue) and the corresponding
ECGsw (red) signals. As can be seen, the artifacts are
numerous during maneuvers.

Fig. 2. Processing steps involved in the computation of the modulation
spectrogram and, ultimately, of the HR.

To address this issue, we propose a HR measurement
algorithm based on the modulation spectrogram (MS) rep-
resentation. This was shown to be more robust to artifacts
in [14]. For a time-domain signal, x(t), its spectrogram,
X(t, f), is a complex-valued spectrotemporal representation
that provides time-dependent information on amplitude and
phase changes over time for different frequency components.
The spectrogram is commonly computed with the short-
time Fourier transform (STFT). The modulation spectrogram,
X(f, fmod), is the natural extension of the spectrogram, as
it characterizes the periodicities in the amplitude changes
for each (conventional) frequency component in the spec-
trogram. This is achieved by applying a time-to-frequency
transform across the time dimension of the spectrogram.
As such, the MS provides a representation of second-order
periodicities, or modulation frequencies. These modulation
frequency components are sometimes referred to as “hidden
periodicities” as they are not observed in the spectrum or the
signal, nor in its spectrogram [21]. The MS is computed as:

X(f, fmod) = Ft {|X(t, f)|} , (1)

where Ft{·} is the Fourier transform operator that is applied
to the time dimension of the spectrogram X(t, f). Thus,
the MS is a 2D representation of conventional frequency
vs. modulation frequency. The relevance of the MS for
processing ECG relies on the periodicities of the ECG signal.
The HR is derived by finding the main modulation frequency
for the conventional frequency components that correspond
to the QRS complex. This main modulation frequency is
found by averaging the MS modulus across the conventional
frequency axis for the spectral components of the QRS
complex. This process is depicted by Fig. 2. ECG signals
were analyzed in 10-s segments with 5-s overlap, and the
spectrogram was computed with the STFT using windows
of 0.125 s with an overlap of 75%. In addition, the MS
has shown to be useful as a quality metric. In [22], an ECG
quality index termed MSQI was proposed and consists of the
ratio of ECG energy to non-ECG energy in the modulation
domain. It was shown that an MSQI > 0.5 indicates accept-
able ECG quality. The interested reader is referred to [22]
for more details about the quality index. Here, we propose
an improvement to the HR measurement algorithm in [14]
and use the MSQI as a parameter to gauge the reliability
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of the estimated HR. If HR values are not acceptable, those
stored in a 5-sample buffer are used. Sudden changes in HR
measures are indicative of artifacts and are filtered out. This
algorithm is described in Algorithm 1.

Algorithm 1: Filter HR values
input : new HR value: HRin,

new MSQI: MSQI in
HR values in buffer: HRbuf

output: valid HR value, HRout

1 RRin ← 60/HRin

2 RRbuf ← 60/HRbuf

3 if |RRin − RRbuf | > RRbuf × 0.2 then
4 if (2× RRin) ≈ RRbuf then
5 RRin ← RRin × 2
6 RRout ← RRin

7 else
8 RRout ← RRbuf

9 if MSQI in < 0.5 then
10 RRin ← RRbuf

11 end
12 end
13 else
14 RRout ← RRin

15 end
16 Update RRbuf by adding RRin

17 HRout ← 60/RRout

18 HRbuf ← 60/RRbuf

To gauge the effectiveness of the proposed MS-based
method to estimate HR, the ground truth HR values obtained
from the chest ECG were used. More specifically, since the
chest ECG was artifact free, the average RR curve derived
from the ECGgt signal and the classic PT algorithm was
used, for each 10-s segment. This RR values were used to
calculate the HR time series that is referred to as avg HRgt.
For comparison purposes, the avg HRsw was also derived
from the ECGsw signal and the PT algorithm; this is to be
used as a benchmark. In turn, the MS-based HR time series
that were obtained by the proposed algorithms from ECGgt

and ECGsw are termed ms HRgt and ms HRsw, respec-
tively. As a result, for each participant under each driving
condition there are four HR time series, namely: avg HRgt,
avg HRsw, ms HRgt, and ms HRsw, each sampled every
5 seconds (or at 0.2 Hz).

Finally, HRV features were computed from the HR time
series. Although HRV features are often computed from
the instantaneous HR time series [13], recently, it has been
shown that time-domain HRV features computed from low
temporal resolution HR time series can provide insightful
information as well [23]. A total of seven time-domain HRV
features were computed: mean RR, std. of RR (SDNN),
coefficient of variation of RR (CVRR), percentage of RR
differences larger than 50 ms (pNN50), mean of the first
RR difference, std. of absolute first RR difference (std. 1diff.
RR), root mean square of first RR difference (RMSDD), and
mean absolute first difference of normalized RR.

E. Subjective ratings and stress classification

The changes in AWWL and arousal w.r.t the driving
conditions were analyzed, as well as their correlation with the
stress levels. With the computed HRV features, we trained a
logistic regression classifier (one for each participant and one
for all the participants) to perform binary stress classification.

TABLE I
RMSE VALUES FOR HR ESTIMATION.

Part. Cond.
avg HRsw

vs.
avg HRgt

ms HRgt

vs.
avg HRgt

ms HRsw

vs.
avg HRgt

ms HRsw

vs.
ms HRgt

#1 no-stress 52.796 0.054 0.017 0.037
stress 66.478 0.094 1.930 2.023

#2 no-stress 0.147 0.215 0.140 0.076
stress 1.966 1.246 0.185 1.430

#3 no-stress 0.003 0.023 0.023 0.000
stress 0.013 0.037 0.051 0.014

#4 no-stress 19.200 0.025 0.122 0.097
stress 18.410 0.086 0.121 0.207

All no-stress 18.036 0.079 0.075 0.052
stress 24.865 0.092 0.064 0.043

All all 19.876 0.222 0.323 0.485

The classifiers were evaluated 100 times under a 5-fold cross-
validation approach. For each classifier the 3 most relevant
features were identified by the magnitude of their weights.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. HR estimation and ECG signal quality

To evaluate the proposed method, we computed the root-
mean square error (RMSE) between avg HRgt (i.e., true HR
measures) and the two proposed measures (ms HRgt and
ms HRsw), as well as the benchmark based on the classi-
cal PT algorithm avg HRsw. Also, RMSE was computed
between ms HRgt and ms HRsw to verify the artifact-
robustness of the proposed method. RMSE was computed for
each participant and condition, and are reported in Table I.
The largest RMSE occurred between the avg HRsw and
avg HRgt curves, thus corroborating the negative impact
that hand-movement artifacts have on the estimation of HR
when classic peak detection algorithms are used. This was
particularly true for participants #1 and #4. On the other
hand, the low RMSE obtained when the proposed method
was used, corroborating that the MS approach reduces the
negative effects of artifacts in HR estimation. This was true
when compared to the ground truth ECG processed with the
proposed and classic methods.

As expected, on average the ECGsw signal presented
lower MSQI values (0.63±0.18), than the ECGgt signal
(0.87±0.07). In both ECG signals, there was not significant
difference in the MSQI values for the stress and no-stress
conditions. To evaluate the changes in the ECGsw signal
quality across the road circuit, we normalized the MSQI
values for each participant-condition pair, and aggregate
them across participants, conditions and loops. The nor-
malized MSQI values (nMSQIs) consisted in the obtained
MSQIs scaled by the average MSQI for a given participant-
condition pair. As a result, an overall quality was obtained
for the entire circuit, this is depicted in Figure 3. As can be
seen, the lowest quality is achieved during maneuvers. This
information can be used in the future as real-time contextual
cues for automated systems.

B. Analysis of subjective metrics and stress classification

All participants reported higher arousal scores under the
stress condition, this increment was on average 35.6 ± 25.
For AWWL, 3 participants reported higher values during the
stress condition, the average change was 15.1±21.5. Pearson
correlation between AWWL and arousal resulted in negative
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Fig. 3. Averaged nMSQI values across participants, conditions and loops,
for ECGsw signal. Subplots (a), (b) and (c) show 10-s segments of
ECGsw signal with good, medium and bad signal quality respectively.

TABLE II
ACCURACY AND TOP-3 FEATURES FOR STRESS CLASSIFICATION.

Part. #1 Part. #2 Part. #3 Part. #4 All
Acc. %
(std.)

88.0
(4.5)

65.8
(8.0)

60.7
(9.5)

59.4
(9.2)

72.3
(3.7)

Feature ranking
top-1 CVRR CVRR SDNN SDNN CVRR
top-2 SDNN SDNN CVRR CVRR SDNN
top-3 std. 1diff. RR RMSDD mean RR mean RR RMSDD

correlations −0.57 and −0.16 for no-stress and stress con-
dition. As ms HRsw is a good estimate of the ground truth
HR time series (according the results in Section III-A), HRV
features were computed from the ms HRsw time series, and
used for the binary classification task. Table II presents the
per-participant and across-participant accuracies, as well as
top-3 features. As can be seen, participant-wise accuracies
ranged from 88%to 59%, and the classifier trained with all-
participants data had an accuracy of 72%. In turn, CVRR
and SDNN features appeared as the top-2 features across all
classifiers. This relationship between HR features and stress
is in line with similar studies that used chestbands to acquire
the ECG signal [8], [9], [10], [11].

IV. CONCLUSIONS

In this work, we evaluated the use ECG signal acquired
with sensors embedded on the steering wheel to discrimi-
nate between non-stressful and stressful driving conditions.
First, we proposed a new quality-aware HR measurement
algorithm based on a modulation spectrogram representation.
The proposed method is robust to artifacts generated during
maneuvers and achieved small errors relative to ground truth
HR measures from chest ECG. HRV measures derived from
the proposed method were used to estimate driver stress
states and achieved an average accuracy of 72% across
all participants. Future work will explore: (i) ECG quality
metrics as context for machine learning algorithms, and (ii)
the addition of other non-intrusive signals such EDA.
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