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Abstract— In this work we try to address if there is a
better way to classify two distributions, rather than using
histograms; and answer if we can make a deep learning
network learn and classify distributions automatically. These
improvements can have wide ranging applications in computer
vision and medical image processing. More specifically, we
propose a new vessel segmentation method based on pixel
distribution learning under multiple scales. In particular, a
spatial distribution descriptor named Random Permutation of
Spatial Pixels (RPoSP) is derived from vessel images and used
as the input to a convolutional neural network for distribution
learning. Based on our preliminary experiments we currently
believe that a wide network, rather than a deep one, is better
for distribution learning. There is only one convolutional
layer, one rectified linear layer and one fully connected layer
followed by a softmax loss in our network. Furthermore, in
order to improve the accuracy of the proposed approach, the
RPoSP features are captured at multiple scales and combined
together to form the input of the network. Evaluations using
standard benchmark datasets demonstrate that the proposed
approach achieves promising results compared to the state-
of-the-art.

I. INTRODUCTION
Vessel segmentation is a fundamental problem of

medical image processing with a wide range of appli-
cations, such as oncology [1], ophthalmology [2] and
neurosurgery [3]. Previous approaches usually devised an
artificial model to analyze the distribution of pixels for
vessel segmentation. However, because of the diversity
of medical images, which comes from the profiles of
different patients, or machines, vessel segmentation is
still a challenging problem in computer vision. Vessel seg-
mentation is essentially a binary pixel-wise classification
problem. A pixel is classified as a vessel or background
based on comparison with its neighborhood. In this work,
the distributions of spatial pixels are used for vessel
segmentation, and a novel method based on distribution
learning is proposed.

In our previous work [4], we demonstrated that a
convolutional neural network can be guided to learn
a statistical distribution by randomly permutating the
temporal pixels. In this work, our previous technique
is extended for vessel segmentation, since vessels in an
image can be segmented by classifying the distributions
of spatial pixels. The pixels are subtracted from their
neighborhoods, and the distributions of the subtraction
results are input into the network for vessel segmenta-
tion, as shown in Fig. I.
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Fig. 1. Pixels Distribution Learning for Vessel Segmentation.

In the proposed approach, a spatial distribution de-
scriptor named the Random Permutation of Spatial
Pixels (RPoSP) feature is proposed. In particular, the
spatial pixels are randomly permutated to guarantee
that only the statistical information is retained. The
RPoSP features are dynamically generated as the input
to a convolutional neural network (CNN) for every
training epoch. It indirectly forces the network to rely
solely on the statistics of the distribution of spatial
pixels. Moreover, several RPoSP features captured under
different scales [5] are combined and used as the input
of the network, to improve the accuracy of the proposed
approach. The main differences between this paper and
our previous work [4] are:

• Random Permutation of Spatial Pixels: In this
paper, the distribution of spatial pixels rather than
temporal pixels is learned by the network. Com-
pared to the temporal pixels, the variation of spatial
pixels includes higher complexity and diversity,
which is one of the motivations behind capturing
the distribution information under multiple scales.

• Multiple Scales: We capture the distribution infor-
mation at multiple scales rather than only one scale.
This strategy provides the network with better in-
formation for learning the distribution and improves
the accuracy of the proposed approach.

• Network architecture: We simplify the network ar-
chitecture considering the computational cost. Our
architecture is quite simple; thus, it should probably
not be considered “deep.” It only includes one
convolutional layer, one rectified linear layer, and
one fully connected layer.

The remainder of this paper is organized as follows.
The next section describes related work. Spatial pixel
distribution learning under multiple scales is discussed
in Section 3. Experimental results are outlined in Section
4, before the work is concluded.

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 2717



The RPoSP 
features

Pixel Labels

C
o

n
vo

lu
ti

o
n

R
ec

ti
fi

ed
 li

n
ea

r 
u

n
it

Fu
lly

 C
o

n
n

ec
te

d
 

So
ft

m
ax

 lo
ss

Fig. 2. Flowchart of the proposed approach.

II. RELATED WORK

Medical image processing is an important problem in
computer vision [6]. In particular, the segmentation of
blood vessels is a challenging problem because of the ex-
treme variations in the morphology of the vessels against
a noisy background [7]–[10]. Many approaches have been
developed on this topic, including several based on the
deep learning networks. However, for brevity, only a few
typical methods related to convolutional neural networks
and distribution analysis are discussed here.

For vessel segmentation, several approaches based on
the analysis of distributions have been proposed. For
example, Hassouna et al. [11] utilized stochastic modeling
to segment cerebrovascular structure from time-of-flight
magnetic resonance angiography, and Evgin et al. [12]
used k-means for rough liver vessel segmentation. In
addition, Oliveira et al. [13] segmented liver vessels in CT
images utilizing region-growing. A pixel was incorporated
within a region if its intensity fell within a predefined
range, which was defined by approximating the image
histogram with a Gaussian Mixture Model (GMM) [14].
However, due to the complexity and diversity of different
vessel structures, the Gaussian distribution may not be
strong enough to handle all these cases. In contrast, we
focus on how to make the network learn the distribution
information automatically.

In addition, there are also several other methods re-
lated to deep learning networks. For example, Dasgupta
et al. [15] formulated the segmentation task as a multi-
label inference problem, which combined a convolutional
neural network with structured prediction. Fu et al.
[16] formulated the vessel segmentation problem as a
boundary detection task. In particular, a multi-scale and
multi-level convolutional neural network was utilized to
learn a rich hierarchical representation. Similarly, Luo
et al. [17] combined the prediction ability of CNNs and
the segmentation ability of CRFs. Moreover, Vega et
al. [18] utilized a Lattice neural network with Dendritic
processing, which does not require parameters and can
automatically construct its structure.

By contrast, we formulate vessel segmentation as a
spatial distribution classification problem. Furthermore,
our network architecture is much simpler than the others
described in this section.

TABLE I
Details of our network architecture, which consists of 4

convolutional layers, 3 batch normalization, 2 max pooling and a
softmax operator.

Type Filters Layer size Data size
Input Data 15× 15× 15
Convolution 10024 15× 15× 15 1× 1× 10024
Rectified linear unit 1× 1× 10024
Convolution 2 1× 1× 10024 1× 1× 2
Softmax

III. SPATIAL PIXEL DISTRIBUTION LEARNING
UNDER MULTIPLE SCALES

In this section, details of the proposed approach are
discussed. The flowchart of our approach is shown in Fig.
II, in which the Random Permutation of Spatial Pixel
(RPoSP) features are captured first and then input into
the network to label if a pixel belongs to a vessel or is
part of the background.

For vessel segmentation in medical image processing,
it is reasonable to segment vessels based on comparisons
between the center pixel and its neighborhood. This is
because the intensity of pixels in a vessel is significantly
different compared to values in neighboring pixels. We
focus on learning the distribution of these comparisons
for segmenting vessels, utilizing a convolutional neural
network. In addition, motivated by our previous work
[4], it is possible to force a network to solely focus on
the statistical distribution, by randomly permutating
the temporal pixels which are used as the input to
the network. However, in this work, the distribution
information is derived from spatial pixels instead of
temporal pixels. Thus, a new distribution descriptor
named Random Permutation of Spatial pixels (RPoSP
features), which is an extension of our previous work,
is proposed. Since the complexity of the distribution
captured from spatial pixels is higher than the one
from temporal pixels, a multi-scale strategy is proposed
to extract multiple RPoSP features to improve the
robustness of the proposed approach. The combination
of several RPoSP features captured from a particular
pixel under different scales is input into the network for
learning the distribution. The network architecture is
devised as a classification network to classify pixels into
the categories of a vessel or background.

The procedure of extracting RPoSP features under
multiple scales is shown in Fig. 3. We introduce the
extraction of RPoSP features for one pixel, but the
procedure is identical for each pixel. Let us denote a
given vessel image as I(x, y), where x and y represent
locations of pixels. The patches with the center location
of (x, y) under multiple scales are extracted, and the
intensity of the center pixel is subtracted from them. In
particular, every pixel of patches is subtracted with the
center pixel to generate a subtracted patches. Following
this, the RPoSP features are captured by randomly
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permutating entries of subtracted patches at a particular
scale. Mathematically, this can be described as follows:

RPoSPx,y(Ri, Ro) = I(x, y)− I(x+ r(m), y + r(n)),

m, n ∈ [1 Ri], r(m), r(n) ∈ [1 Ro]
(1)

where RPoSPx,y(Ri, Ro) denotes the RPoSP feature
extracted from the pixel located at (x, y). m,n are the
indices of an entry in a patch and r() is the random
permutation to generate a random position according
to the input indices. Ri and Ro are the parameters to
control the size of RPoSP features under multiple scales.
In particular, Ro is the radius of patches under different
scales, and Ri is the radius of the RPoSP features. The
reason we use two parameters is that the RPoSP features
captured from different scales need to be linked together
to input into the network. First, several patches with
different radius of Ro are extracted. These patches are
extracted from different scales thus have different radius
of Ro In order to link them together, we used down-
sampling techniques to guarantee than the number of
pixels is Ri×Ri. Therefore, these patches from different
scales can be reshaped into the same size of Ri×Ri, and
can be linked together and input into the network.

The network architecture in the proposed approach
is devised for classification, as shown in Table I. The
input of the network is a combination of RPoSP features
captured at multiple scales; and, the output is the label
corresponding to the pixel where these RPoSP features
are extracted. Mathematically, the steps above can be
shown as follows:

ℓx,y = D(Lθ(F1,F2, . . . ,FN )),

Fn = RPoSPx,y(m,n : Ri
n, R

o
n)

(2)

where ℓx,y is a binary label of the pixel at location (x, y)
identifying it as a vessel or the background, L is the
learning block and D is the decision block. θ denotes the
parameters of the learning block. The learning block L
consists of convolutional, and rectified linear layers. The
decision block D includes a fully connected layer linked
with a Softmax loss.

There are several differences between the proposed
approach and our previous work during network training.
In our previous work, the data input into the network
for training was only generated once. Thus, the input
of the network was the same for every training epoch.
Under this condition, it is possible that the network
overfits the pattern implied in random permutations
rather than learn the statistical information included
in RPoSP features. In order to address this issue, a
dynamic training strategy is proposed as a compensation.
In this approach, the entries of RPoSP features are
randomly re-permutated by new permutations for every
training epoch. This strategy effectively prevents our
network from overfitting, and improves the accuracy of
the proposed approach for complex scenes.
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Fig. 3. The extraction of Random Permutation of Spatial Pixel
(RPoSP) features under multiple scales.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed approach.
Our approach is compared with several state-of-the-
art methods [15]–[20] on the DRIVE [21] dataset. In
particular, both of these methods are based on a deep
learning network. It should be noted that the training
data is important for supervised methods and has a
direct contribution in their performance. Methods with
more training data are expected to achieve better results.
This is especially true when deep learning networks are
utilized. In the DRIVE [21] dataset, there are 20 images
included in the training set, with another 20 images
contained in the testing set. For the methods compared,
all the 20 images in the training set are used for training
the network. In contrast, since the proposed approach
extracts training instances at a pixel-level, many training
instances can be captured within one image. Considering
this, our network is trained with 15 images, accounting
for the limitations on our computational resources.

During the experiments, Acc, Se, Sp, DSC and MCC
metrics are used for evaluations. The definitions of these
metrics are shown below:

Acc =
TP + TN

n
, Se =

TP

TP + FN
,Sp =

TN

TN + FP
,

DSC =
2TP

FP + FN + 2TP
,

MCC =
(TP × TN)− (FP × TN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

where TP and FP are True Positive and False Positive.
Here, positive refers to a vessel, while negative repre-
sents background. True denotes that the result of this
detection is correct, while False means otherwise. Thus,
TP means that the result of the detection is a vessel as
well as being the ground-truth.

Quantitative comparisons between the proposed ap-
proach and state-of-the-art methods are shown in Table
II. In addition, due to the length of paper, only the
qualitative results of the proposed approach are shown
in Fig. 4. As shown in Table II, the proposed approach
achieves promising results compared to other state-of-
the-art methods. In particular, the proposed approach
achieves the highest scores in Se and Acc, which are
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TABLE II
Quantitative comparison between the proposed approach and
other state-of-the-art methods on the DRIVE [21] dataset.

Methods Acc Se Sp DSC MCC
Luo et al. [17] 0.95 0.75 - - -
Dasgupta et al. [15] 0.95 0.75 - - -
Fu et al. [16] 0.95 0.76 - - -
Vega et al. [18] 0.94 0.74 0.96 0.69 0.66
Wang et al. [19] 0.95 0.74 0.98 - -
Fraz et al. [20] 0.95 0.74 0.98 - -
Proposed approach 0.95 0.76 0.97 0.78 0.51

Vessel Image GroundTruth
Proposed 
Method

Vessel Image GroundTruth
Proposed 
Method

Fig. 4. Qualitative results of the proposed approach on the DRIVE
[21] dataset.

considered as the completeness and the accuracy of the
vessel mask generated.

There are some disadvantages to the proposed ap-
proach. Although it achieves good scores in the Acc met-
ric, which is considered as the accuracy. Since the entries
of the RPoSP features are randomly permutated during
every training epoch, it is possible that the RPoSP
features fed into the network during the testing cases are
never shown in the training procedure. In this condition,
the network may falsely generate some random noise. In
addition, as shown in Fig. 4, the proposed approach work
well for the big vessel segmentation but not for the fine
structures. This is mainly because the down-sampling
procedure which drop information of fine structures.

V. CONCLUSION
In this paper, we proposed a novel distribution learning

approach for vessel segmentation. In particular, a spatial
pixel distribution descriptor named Random Permuta-
tion of Spatial Pixel (RPoSP) feature was proposed
to indirectly force the convolutional network to learn
statistical distributions. The spatial pixels contained in
the RPoSP features were randomly permutated to guar-
antee that only the statistical information was retained.

Furthermore, several RPoSP features were captured at
multiple scales and combined together to input into the
network. This improved the robustness and accuracy
of the proposed approach. Benefitting from the strong
learning ability of deep learning networks, the proposed
approach achieved promising results compared to others
state-of-the-art methods on a standardized dataset. In
the future, we will work on optimization of our code to
reduce the computational cost of the proposed approach.
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