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Abstract— Large annotated lung sound databases are
publicly available and might be used to train algorithms for
diagnosis systems. However, it might be a challenge to develop
a well-performing algorithm for small non-public data, which
have only a few subjects and show differences in recording
devices and setup. In this paper, we use transfer learning to
tackle the mismatch of the recording setup. This allows us to
transfer knowledge from one dataset to another dataset for
crackle detection in lung sounds. In particular, a single input
convolutional neural network (CNN) model is pre-trained on a
source domain using ICBHI 2017, the largest publicly available
database of lung sounds. We use log-mel spectrogram features
of respiratory cycles of lung sounds. The pre-trained network
is used to build a multi-input CNN model, which shares the
same network architecture for respiratory cycles and their
corresponding respiratory phases. The multi-input model is
then fine-tuned on the target domain of our self-collected
lung sound database for classifying crackles and normal lung
sounds. Our experimental results show significant performance
improvements of 9.84% (absolute) in F-score on the target
domain using the multi-input CNN model and transfer learning
for crackle detection.

Clinical relevance— Crackle detection in lung sounds, multi-
input convolutional neural networks, transfer learning.

I. INTRODUCTION
Lung sounds are relevant indicators of respiratory

health [1], [2]. They are classified as normal and adventitious.
Normal respiratory sounds are heard when no respiratory
disorders exist. Adventitious lung sounds usually present
pulmonary disorders that are superimposed on the normal
respiratory sounds. Crackles are adventitious lung sound,
which are discontinuous, explosive and non-musical. They
can be fine or coarse depending on their duration, loudness,
pitch, timing in the respiratory cycle (i.e. inspiration or
expiration). The appearance of crackles may be an early
sign of respiratory diseases. The number of crackles per
breath is associated with the severity of diseases in patients
with interstitial lung conditions. Moreover, the waveform
and occurence of crackles may have clinical significance in
differential diagnosis of cardiorespiratory conditions [2].

Auscultation is an important mean to diagnose pulmonary
diseases using a stethoscope. In the last decades, com-
putational methods i.e. computational lung sound analysis
(CLSA) have been developed for automated detection and
classification of adventitious lung sounds, which use digital
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recordings, signal processing techniques and machine learn-
ing algorithms. CLSA overcomes the conventional method’s
limitations and offers advantages for medical diagnosis [3].
Furthermore, the methods are carefully evaluated in real-life
scenarios and can be used as portable easy-to-use devices
without the necessity of expert interaction; especially, bene-
ficial when facing infectious diseases as COVID-19.

In CLSA systems, adventitious lung sound detection and
classification includes three key steps: pre-processing of au-
dio signals, extracting the relevant features and detection or
classification of adventitious sounds (i.e. crackles, wheezes
and both of them). In the pre-processing step, resampling
and filtering are applied to remove heart sounds, background
noises and sensor contact interference. Subsequently, features
in the time domain and time-frequency domain are extracted
such as the Hilbert-Huang transform, Fourier transform,
short-time Fourier transform, wavelet transform, and S-
transform [4]. The features are processed by conventional
machine learning such as self-organizing maps, Gaussian
mixture models (GMMs), support vector machines (SVMs)
and multilayer perceptron networks (MPNs) [3]. Recently,
convolutional neural network (CNNs) [5], [6], [7], recur-
rent neural networks (RNNs) [8], [9] or hybrid CNNs and
RNNs [10], [11], [12] using time-frequency representations
such as MFCCs and spectrograms have been the most
successful approaches. Due to limitations in the amount of
available data, the performance and generalization ability of
the lung sound classification system may suffer. To deal with
these disadvantages, data augmentation and transfer learning
from ImageNet [5], [10], or audio scene datasets [11] have
been explored.

In this work, we improve the generalization ability and
performance for crackle detection using our multi-channel
lung sound database. We propose a new transfer learning
approach for a multi-input convolutional neural network.
We use the ICBHI 2017 scientific challenge respiratory
sound database [2] for pre-training the model using log-
mel spectrogram features of full respiratory cycles. The pre-
trained model is then used to build a multiple-input CNN
served with features from the respiratory cycles and phases
(i.e. inspiration and expiration). Furthermore, to strengthen
patterns of adventitious lung sounds, sample padding is
applied to fill up the uniform length of the respiratory cycle
and phases. The main contributions of the paper are:

• We split respiratory cycles into phases and perform sam-
ple padding on both of them to enrich the information
of adventitious sounds for the lung sound classification
system.
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Fig. 1. Multi-channel lung sound recording device.

TABLE I
NUMBER OF SUBJECTS AND CYCLES IN THE DATASET

# Subjects # Respiratory Cycles
Healthy IPF Normal Crackles Total
16 7 4405 1791 6196

• We exploit transfer learning in using the pre-trained
single input model to build a multi-input CNN model
for lung sound classification.

The outline of the paper is as follows: In Section II, we
introduce the lung sound databases used as source and target
domains. In Section III, we present our system. In Section IV,
we present the experimental setup including the evaluation
metrics and the experimental results. Finally, we conclude
the paper in Section V.

II. MATERIALS

A. Source Domain

The ICBHI 2017 database [2] consists of 920 annotated
audio samples from 126 subjects. The database includes 6898
different respiratory cycles with 3642 normal cycles, 1864
crackles, 886 wheezes, and 506 cycles consisting of both
crackles and wheezes.

B. Target Domain

In a clinical trial, the multi-channel lung sound
database [13], [8], [12] has been recorded. It contains lung
sounds of 16 healthy subjects and 7 patients diagnosed with
idiopathic pulmonary fibrosis (IPF). We used our 16-channel
lung sound recording device (see Fig. 1) to record lung
sounds over the posterior chest at two different airflow rates,
with 3 - 8 respiratory cycles within 30s. The lung sounds
were recorded with a sampling frequency of 16kHz. The
sensor signals are filtered with a Bessel high-pass filter with
a cut-off frequency of 80Hz and a slope of 24dB/oct. From
all recordings, we extracted full respiratory cycles using the
airflow signal. Based on the characteristic of fine crackles for
IPF from mid to late inspiration [14], we manually annotated
respiratory cycles without crackles, as there are several
recordings of subjects with IPF, where sensors placed on
the top of the multi-channel recording device do not contain
crackles. The number of breathing cycles with/without IPF
are shown in Table I.

III. PROPOSED METHODOLOGY

The proposed system includes three key stages shown in
Fig. 2. Firstly, the respiratory cycles are pre-processed with
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Fig. 2. Proposed System.

separation into respiratory phases and sample padding in the
audio signal domain. Secondly, log-mel spectrograms are
extracted from the respiratory cycles and phases. Finally,
the features are fed to the multi-input CNN model for fine-
tuning.

A. Audio Pre-processing and feature extraction

We use audio pre-processing and feature extraction tech-
niques of [6] for both source and target domains. As audio
recordings from both domains were collected with different
sampling rates, respiratory cycles are resampled to 16kHz.
Similar to our previous work, the source domain is processed
using full respiratory cycles, while the target domain is
processed using full respiratory cycles and additionally the
respiratory phases (i.e. inspiration/expiration).

1) Respiratory Phase Separation: In addition to moni-
toring the presence of adventitious sounds, clinicians need
to be aware of their timing in the respiratory cycles i.e.
early/mid/late inspiratory or expiratory as it may have clinical
significance for the assessment of the patient respiratory
status and for the differential diagnosis of cardiorespiratory
disorders [15]. Therefore, we propose for our CLSA ap-
proach to use the combination of a full respiratory cycle with
either one or both respiratory phases. To split a respiratory
cycle into inspiration and expiration, we use a particular fixed
length ratio of inspiration to respiratory cycle. Research on
the time duration of the respiratory phase for lung cancer
patients and dogs [16] shows that the average length ratios of
inspiration to respiratory cycle is about 1.7(s): 5.2(s), which
is approximately 1:3 of inspiration to full cycle. Therefore,
we empirically use five length ratios for inspiration to
respiratory cycle, namely 1:3, 2:5, 3:7, 4:9, and 1:2.
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2) Sample Padding: The length of the respiratory cycles
varies in the data while our CNN model requires the same
input sizes. Hence we extract the same number of samples
in the respiratory cycle or phase. We choose a fixed length
for respiratory cycles by using a maximum length of the
respiratory cycles in the target domain (i.e. 131960 time
samples) and use this length to determine the maximum
length of inspiration and expiration using the ratio from
above. Furthermore, we partially augment these fixed lengths
by sampling from the available cycle or phase samples
in time domain. In particular, we do sample padding in
time-reversed order to avoid abrupt signal changes. We call
this sample padding. The sample padding technique showed
its efficiency compared to zero padding in our previous
work [6].

Since the target domain consists of IPF subjects’ record-
ings, in which crackles are located in the mid to late
inspiratory phase [1], we emphasize the crackles (in the mid
to late inspiratory phase) by using sample padding in time
reversed order, i.e. using the last samples of inspiratory or
expiratory phases first.

3) Feature Extraction and Normalization: We use 512
samples as window size of the fast Fourier transform (FFT)
without overlap between the windows. The number of mel
frequency bins is chosen as 45. The logarithmic scale is
applied to the magnitude of the mel spectrograms. The log-
mel spectrograms are normalized to zero mean and unit
standard deviation.

B. Data Augmentation

Similar to our previous work [6], we use time stretching
and vocal tract length perturbation (VTLP) to balance the
training dataset and prevent over-fitting for the source and
target domains.

For the source domain, time stretching is used to double
the number of samples of the wheeze, and both crackle
and wheeze classes of the training set. VTLP enlarges the
dataset for all classes of the original training set and the
time stretched data. More details can be found in [6]. While
for the target domain, we use VTLP only for crackles of
respiratory cycles and phases of the training set.

C. Deep Learning Approaches

1) Transfer Learning: In this work, the adventitious lung
sound classification tasks for source and target domains are
different. The target label space (i.e. normal and crackles)
is a subset of the source’s label space (i.e. normal, crackles,
wheezes and both crackles and wheezes). Furthermore, the
energy distributions of the log-mel spectrograms of both
domains are different, which is caused by differences in
recording devices and noise levels of the audio signal.
Therefore, transfer learning is promising to deal with the
problem of limited training data in our target domain and
to enhance the generalization ability and performance of our
lung sound classification system. To do so, a CNN model
is trained from scratch from the source domain data. Then
the pre-trained model is transfered to the target domain by

reusing the learned features of the pre-trained model to build
a multi-input CNN model. Several of the first layers of
the multi-input CNN are frozen while the remaining layers
are fine-tuned with the target domain data. We report the
performance of transfer learning by fine-tuning at different
layers in the experiments.

2) Pre-trained Convolutional Neural Network (CNN): We
reuse the CNN model of 7 convolutional compositions in
our previous work [6]. The seven convolutional compositions
(i.e. blocks) include a batch normalization layer (BN) and a
convolution layer (Conv2D) using ReLU activations (BN-
Conv2D-ReLU) shown in the Fig. 2.

The CNN model is trained from scratch using data from
the source domain with splitting randomly for 80% train-
ing/ 20% validation dataset based on respiratory cycle-wise,
which is different to the official ICBHI dataset splitting. We
achieves 77.7% of ICBHI average score.

3) Multi-Input Convolutional Neural Networks (MI-
CNNs): In order to combine the respiratory cycle and
phases of the proposed system, we exploit transfer learning
different to [5], [10], or [11], in which LSTM, or CNN
layers were added after the feature learning part of the
pre-trained model. In our work, we build MI-CNN models
with two or three branches corresponding to the combination
of respiratory phases. There are four combinations such as
full cycle - inspiration phase, full cycle - expiration phase,
inspiration - expiration phase and a triplet of full cycle -
inspiration - expiration phase. The corresponding features
are fed into each branch of the MI-CNN. Each branch
has the same structure reused from the pre-trained model.
Following the last convolutional blocks, again global average
pooling (GAP) layers are used. The output of each branch is
concatenated before fed to the output layer using the softmax
activation for classification. This outperforms the case of
using either a fully connected layer or mixture of expert layer
(It is based on empirical results, not proved in this paper).
The architecture of a MI-CNN model using a pair of full
respiratory cycle and inspiration phase is shown in Fig. 2.

Since the data distributions of the source and target
domains are different, we update all BN layers of the MI-
CNN model. We freeze the first convolutional blocks and
perform fine-tuning of the MI-CNN model beginning with
layers of the second, third or fourth convolutional blocks.

IV. EXPERIMENTS

A. Setup

We perform a respiratory cycle-wise classification of
crackles and normal classes. We evaluate the performance
for the target domain using Precision P+, Sensitivity Se
and F-score [8]. For the target domain, due to the limited
amount of data samples, we use 7-fold cross-validation with
the recordings of each IPF subject appearing once in the test
set. Each subject is assigned to either training, validation or
test set. The reported performance of the system is an average
accuracy of five independent runs for seven folds using the
same data splittings.
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TABLE II
COMPARISON OF PROPOSED SYSTEMS.

Proposed Systems Se P+ F-Score±std

Scratch Cyc SamplePad 0.8526 0.6675 0.7487 ±0.0366

Scratch Cyc Inp Ratio 25 SamplePad 0.9080 0.7373 0.8137 ±0.0228

Scratch Cyc Exp Ratio 49 SamplePad 0.8975 0.6926 0.7818±0.0253

Scratch Ins Exp Ratio 25 SamplePad 0.9035 0.7582 0.8245 ±0.0239

Scratch Cyc Ins Exp Ratio 25 SamplePad 0.8996 0.7261 0.8036 ±0.0288

Scratch Cyc ZeroPad 0.8450 0.6521 0.7361 ±0.0366

Scratch Cyc Inp Ratio 25 ZeroPad 0.8908 0.7476 0.8129 ±0.0271

Scratch Cyc Exp Ratio 49 ZeroPad 0.9064 0.6857 0.7807±0.0190

Scratch Ins Exp Ratio 25 ZeroPad 0.9070 0.7037 0.7925 ±0.0212

Scratch Cyc Ins Exp Ratio 25 ZeroPad 0.9005 0.7457 0.8159 ±0.0194

2ndConv Cyc Inp Ratio 12 SamplePad 0.8532 0.8411 0.8471 ±0.0444

4thBN Cyc Exp Ratio 13 SamplePad 0.8647 0.7250 0.7887 ±0.0343

3rdBN Ins Exp Ratio 49 SamplePad 0.8627 0.8005 0.8304 ±0.0400

3rdConv Cyc Ins Exp Ratio 49 SamplePad 0.8845 0.7917 0.8356 ±0.0405

Training the networks is carried out by optimizing the
focal loss using the Adam optimizer at a learning rate of
0.0001 and a batch size of 32 for the source domain and 15
for the target domain. The number of epochs is set to 150
for all tests and the optimal model is that with the highest
validation accuracy. We use the Glorot uniform initializer for
the network weights. Weight decay regularizer L2 is included
at a factor of 0.001. Data is shuffled between the epochs.

We observe the impact of five separation ratios of inspi-
ration and respiratory cycles. Furthermore, several combi-
nations of respiratory cycle ( Cyc ), inspiration ( Ins ) and
expiration ( Exp ) phase for multi-input models have been
evaluated.

B. Performance

Table II presents the performance comparison of our
proposed systems on target domain data using models trained
from scratch and via transfer learning using the ICBHI
2017 database for different input combinations using sam-
ple padding and zero padding. We can see that sample
padding ( SamplePad) mostly outperforms zero padding
( ZeroPad) for single input and the best combinations
of multiple inputs and splitting phase ratios. The multi-
input CNN systems outperform the scratch single input
CNN systems significantly. Transfer learning for multi-
input CNN models achieves better performances compared
to models trained from scratch. The best performing sys-
tem (2ndConv Cyc Inp Ratio 12 SamplePad) use trans-
fer learning for the multi-input model of respiratory cycle
and inspiration phase with splitting phase ratio of 1:2. Fine-
tuning from the second convolutional layer (2ndConv ) of
sample padding is performed. The F-score is 84.71%.

V. CONCLUSIONS

This work introduces transfer learning and multi-input
convolutional neural networks using combinations of full
respiratory cycle and phases for adventitious lung sound
classification. We evaluate empirically the effect of different
splitting phase ratios for inspiration phase and respiratory
cycle instead of using additional signals i.e airflow or
complex phase identification methods. Furthermore, various
combinations of the respiratory cycle and its corresponding

phases for the multi-input model are trained from scratch and
transfered from the ICBHI 2017 domain to the target domain.
Our best transfered system use the multi-input model and
performs fine-tuning starting at the second convolutional
layer. It uses the respiratory cycle and the inspiration phase
with a splitting phase ratio of 1:2. It outperforms the model
learned from scratch on the target domain using the full
respiratory cycle by 9.84% (absolute) and the best multi-
input model by 2.26% (absolute) in F-score.
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