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Abstract— Tissue biopsy can be wildly used in cancer di-
agnosis. However, manually classifying the cancerous status of
biopsies and tissue origin of tumors for cancerous ones requires
skilled specialists and sophisticated equipment. As a result, a
data-based model is urgently needed. In this paper, we propose
a data-based ensemble model for tumor type identification and
cancer origins classification. Our model is an ensemble model
that combines different models based on mRNA groups which
serve distinct functions. The experiment on the TCGA dataset
exhibits a promising result on both tasks – 98% on tumor type
identification and 96.1% on cancer origin classification. We also
test our model on external validation datasets, which prove the
robustness of our model.

Index Terms— cancers, ensemble learning, RNA-seq, Bioin-
formatics

I. INTRODUCTION

Tumor identification and cancer origin classification for
tissue biopsy are of great significance for cancer diagno-
sis and molecular cancer studies. However, cancers must
be determined by competent pathologists using multiple
equipments and materials, such as X-ray, CT, PET-CT and
pathological sections taken from fine-needle aspiration and
surgeries. It is also arduous to discriminate precancerous
lesions and solid tumors, primary cancers and recurrent
cancers, which affect regimens applied to patients. Moreover,
this process is also time-consuming. So, a cheap, convenient
and fast method is in dire need.

Following computer technical development, researchers
recently notice that gene expression data can be utilized
in tissue biopsy area. Several data clusters can be found
in figure 1 after reducing the RNA data dimension by
uniform manifold approximation and projection(UMAP)
algorithm[1]. This figure demonstrates the different origins
of cancers have different characters of gene expression.
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Some people try to solve these problems with DNA data.
Kang et al.[8] use a probabilistic approach to achieve a
73.5% accuracy for six different types of cancers. Soh et
al.[2] model the DNA sequence with SVM and achieve an
accuracy of 77.7% for a 28 class prediction problem. Hao
et al. [4] notice the tumor and normal tissue can also be
classified with DNA data. They build a model based on
TCGA DNA methylation to classify four different cancers
and two different tumor status together and get an accuracy
of 97.1%.

Fig. 1: This figure shows the expression of Gene data
after using dimension reducing algorithm UMAP[1]. Twenty-
four cancer types from nineteen anatomical sites clusters
show a distinct gene expression patterns which provides the
theoretical evidence of our paper.

Jung et al. [5], Pal et al.[6] and Wei et al.[23] is the first
group of people trying to use RNAs to classify different
cancer types. However, most of their methods have to use
specific biomarkers from existing. Since the test standard of
each dataset is distinct, these methods often fail to deploy on
other datasets. Kang et al. [8] build a model based on genetic
algorithms and Random Forest to show a high recall (92%)
for thirty-two different types of the cancer classification task.
Lopez et al. [9] introduce a feature selection method. From
all of the 1046 miRNA data, they select only 100 different
miRNAs. The few feature model performs a comparably
result with the full-feature model on the cancer classification
task (only 1.6% decrease on accuracy). In Laplante et al.’s
work [10], a deep-learning-based method is proposed to
classify twenty different types of cancer which achieve a
96.9% accuracy on TCGA dataset. They also come to an
interesting conclusion that following the growth of age, the
cancer type of patients will be more difficult to classified.
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Sun et al.[11] also build a deep-learning-based model which
can predict tumor type and origin of different cancers. Their

Fig. 2: This figure exhibits our overall pipeline of our model.
The left blue part shows the TCGA Dataset used in ensemble
models: we train our model with training set, fine tuning
the parameters with validation set and test our model with
testing set. The grey part is our ensemble model which works
with the idea of ensemble learning. Moreover, the dark blue
part is the external validation dataset using to varified the
rubustness of our model on both identify tumor types and
nineteen different origins of cancer tasks.

model achieves not only high performance on the TCGA
dataset but also shows promising results on the external
validation dataset.

However, few of these methods (both RNA based and
DNA based methods) notice different RNA or DNA of
different functions may contribute to the overall performance
of the model. In this paper, we use the idea of ensemble
learning stacking five groups of different mRNA data which
serves varied functions to classify tumor types and nineteen
different origins of cancer. In the cancer origin classification
problem, we also apply a feature selection model selecting
important features for cancer origin classification problems.
With only half the number of all features, our model shows
a comparable result with the full feature model on TCGA
dataset.The experiment on TCGA dataset shows our method
is state-of-the-art in this area. The external dataset validation
shows the robustness of our model.

II. METHOD

In this section, we will show how our model works step
by step.

A. Preprocess

Before training and testing our model, we firstly do a pre-
processing step for transformation, grouping and normalizing
the raw RNA data.

The first step is to transform raw data from external
sources to a standard formation used in TCGA[12]. We
download RNA-seq fastq files and process them into count
matrices following the TCGA mRNA pipeline (https://
docs.gdc.cancer.gov/Data/Bioinformatics_
Pipelines/Expression_mRNA_Pipeline/).
Briefly, fastq files are aligned to GRCh38.d1.vd1.fa by

STAR (version 2.7.6a) to form bam files and transcripts are
counted from bam files using HTseq-count (version 0.13.5).
In this way, non-TCGA datasets share a similar distribution
with TCGA’s. We process count matrices as the TCGA
dataset do.

To escalate the overall prediction accuracy and extend
biomedical interpretation, we build five sub-models with
different gene (feature) lists.Transcription factors are down-
loaded from AnimalTFDB (http://bioinfo.life.
hust.edu.cn/AnimalTFDB/#!/). Cancer testis anti-
gen are downloaded from CTDatabase (http://www.
cta.lncc.br/). Cancer cell metabolism genes are
downloaded from ccmGDB (https://bioinfo.uth.
edu/ccmGDB/). Autophagy gene list is retrieved from
the Autophagy database (http://www.tanpaku.org/
autophagy/index.html). Duplicated genes in different
lists.

Some mRNA data, even selected by the pipeline men-
tioned above, when we check them, we find all of the patients
show the same expressions, such as ’PTPRK’, ’ACAN’,
’ACADs’ ... For these mRNAs, we directly remove them
from our dataset.

Finally, all the RNA data is normalized within 0 to 1
because most machine learning algorithms perform better
with scaled data. For each mRNA:

mRNAi =
mRNAi −min(mRNAi)

max(mRNAi)−min(mRNAi)
(1)

Fig. 3: This figure shows the overall structure of our models.
The left blue part, including input data and pre-process mod-
ule, is shared by tumor type identification and cancer origin
classification models. The middle blue part is the tumor type
identification part–a neural-network-based ensemble model
that stacks five neural networks. The input data of each
submodel is a mRNA group serving different functions. The
green part is the cancer origins classification model. The
general idea is similar to the tumor type identification model,
but it has two unique parts: the base model is lightgbm, the
other is a feature selection module that chooses the important
mRNA. The feature selection part is optional. If we deploy
this part in our model, only half of the features will be used,
and the model performs comparably good results with the
full feature model.
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B. Feature Selection

After data normalizing and classification, we use Linear
SVM and L1 regularization to select significant mRNAs
which showed very high correlations with 19 anatomical
sites on training set. For each anatomical site situation, We
determine which mRNA features are related to the position
by obtaining the L1 regularization minimum solution of the
loss function:

min

N∑
i=1

[1− yi(ωTxi + b)]+ + λ||ω||1 (2)

Where N = 1090, yi represents the ith sample’s tumor
situation in this site, and xi represents the ith sample’s
all mRNA features. ω, b are the parameters of the loss
function. In this equation, we apply L1 penalty to obtain
sparse solutions of ω. Then, mRNAs, whose coefficient in
this least solution was more than 0 were chosen. Following
this principle, 1693 significant mRNAs are selected from the
original 3239 features.

Linear models using L1 norm as penalty term will get
sparse solution–the coefficients of most features are 0, so we
can have a more reduced model with less feature. Moreover,
the regularization method reduces the risk of overfitting.

C. Submodel

In this part, we will discuss the Mathematical form of each
submodel. As we build two models for two different tasks –
tumor identification and cancer origins classification.

We will introduce each model separately. The general form
of each model is quite similar – with five different submodels
digging five different groups of RNA which serve a specific
function. Since the tasks are different, the submodel of each
task is distinct. For tumor identification, the submodel is a
two-layer neural network; for cancer origins classification,
the submodel is lightgbm. The final step of these two tasks
are similar – the output of each submodel are given different
weight and combined with the final output of our model.

For a specific task, the structure of each model is the
same. We denote submodel i (i = 1, 2, 3, 4, 5, 6) for each
submodel and will discuss the mathematics formation of each
submodel.

1) Neural Network: We first build a Neural Network
model trying to identify tumour types.

The formation of each sub-model is the same, which is a
two-layer neural network. The formation can be written as
follows:

ŷi = f2(f1(wi2f1(wi1inputi + bi1) + bi2)) (3)

ŷi is predicted by submodel i (i = 1, 2, 3, 4, 5, 6). wi1 and
wi2 are weights of the first and the second layers of submodel
i; bi1 and bi2 are bias of the first and the second layers of
submodel i; f1 and f2 are activation functions. f1 is relu:

f1 =

{
x x > 0

0 x ≤ 0
(4)

f2 is sigmoid:

f2 =
1

1 + e−x
(5)

Since the range of the sigmoid function is between 0 and 1,
we can then treat the output of this function as the possibility
of whether the tissue is normal.

As the normal samples are much less than tumor sam-
ples(about 1 : 16), we introduce focal loss[13] to deal with
the extremely unbalanced data distribution. The loss function
is written as follows:

L =

{
−α(1− ŷ)λlogŷ y = 1

−(1− α)ŷλlog(1− ŷ) y = 0
(6)

2) Lightgbm: The lightgbm[14] model is built to identify
the origins of different types of cancers.

Lightgbm is one of Gradient Boost Decision Tree(GBDT)
algorithms. Among all of the GBDT methods, lightgbm is
one of the most effective algorithms, because it introduces
some tricks like Gradient-based One-Side Sampling(GOSS)
and EFB(Exclusive Feature Bundling) to solve the defect that
too much time consumption when the dimension of input is
large.

For traditional GBDT methods like XGboost[15], the
original objective function is expanded as the second-order
of Taylor expansion.

L ' Σni=1[gif(xi) +
1

2
hif

2(xi)] + ω(f) (7)

L is the loss function of GBDT model; gi and hi are
the first and second derivatives of the loss function; xi is
the ith dimension of input and ω is regularization terms for
preventing over-fitting. From this function, we can find that
the computing cost will expansion for the second-order of
derivatives is tough to compute, when the dimension of input
data grows.

Lightgbm solves this problem by introducing a novel
GOSS mechanism which can maintain a balance between
the accuracy of model and time consumption of training the
model. Based on this idea, all the features are divided into
two groups – one is large gradient samples and another is
small gradient. The model will retain all the large gradient
features and randomly choose some of the small gradient
ones. For instance, top a% of the gradient of features are
selected as a large gradient(LG) group and b% of rest features
are used as a small gradient(SG) group. Only these two
groups of data are used in training. The idea can be found
in follows:

G = Σxi∈LGgi +
1− a%

b%
Σxi∈SGgi (8)

EFB helps to deal with high-dimensional sparse features
by binding mutually exclusive features into a single feature.
Also, leaf-wise and parallel tricks ensure lightgbm efficiency.
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Since this model is used to classify nineteen different types
of cancer origins, we use multiple cross entropy as the loss
function:

L = − 1

N
ΣN−1i=0 ΣK−1k=0 yi,klogpi,k (9)

While N is total samples, the label of yi,k means the ith
sample in group k and pi,k is predicted by model for the
possibility of ith sample in group k.

D. Model Integration

Finally, the submodels will be integrated into an ensemble
model for final prediction. As both models for different tasks
share the same idea, they will be illustrated together.

P = Σ5
i=1αipi (10)

P denotes the final output of our model, pi is the predic-
tion of the ith submodel and αi is the weight of each model.
In the training step, we divide the whole dataset into the
training set, testing set and validation set. The performance
of each model on the validation set is used as the weight of
each model.

III. EXPERIMENTS

This section will show the training details of our models.
And then, the simulation results on TCGA[12] and other
validation datasets will be discussed.

A. Training Details

This work is implemented by TensorFlow[16](first model)
and lightgbm[14](second model) framework.

For the first model, α is set to 0.2 and λ is set to
2. To optimize this neural network, we applied Adam[17]
optimizer and the learning rate of all of the submodels is set
to 0.01. The weights of networks are initialized by glorot[18]
uniform distribution.

The second model is based on lightgbm[14]. Since there
are many hyper-parameters for lightgbm, we fine-tuning
the model with an effective hyper-parameter optimization
framework called optuna[20]. The specific hyperparameter
can be found on our project website https://github.
com/GARYXTY/TCGA-Project.

B. Dataset Description

We download level 3 RNA-seq raw count matrices of
24 cancer types in TCGA from UCSC Xena (https:
//xenabrowser.net/datapages/). These 24 types
of cancers originate from 19 anatomical sites. Raw counts
are normalized into TPM values which are more compa-
rable between samples. ENSEMBL-IDs are annotated as
gene symbols using gencode.v22.annotation.gtf (https://
www.gencodegenes.org/). When encounter with du-
plicated gene symbols corresponding to different transcripts
IDs, transcripts that owns the highest median values would
represent the genes. We train and cross-validated models in
the TCGA cohort.

We split TCGA dataset into three different cohorts – train-
ing set(67.5%), testing set(25%) and validation set(7.5%).
We train the model with the training set and fine-tuning it
with the validation set. The best model on the validation set
will be applied to the testing set to evaluate our model’s final
performance.

We enroll five external validation cohorts to further
demonstrate our models’ accuracy, two of which are
breast cancers (The detailed information can be found on
https://github.com/GARYXTY/TCGA-Project
). The remaining datasets are cervical cancer, clear cell
renal cell cancer and gastric cancer. We download RNA-
seq fastq files and process them into count matrices
following the TCGA mRNA pipeline (https://
docs.gdc.cancer.gov/Data/Bioinformatics_
Pipelines/Expression_mRNA_Pipeline/).
Briefly, fastq files are aligned to GRCh38.d1.vd1.fa by
STAR (version 2.7.6a) to form bam files and transcripts
were counted from bam files using HTseq-count (version
0.13.5). In this way, non-TCGA datasets share a similar
distribution with TCGA’s. We process count matrices as
described above.

C. Result on Tumor Classification

Our approach achieves an accuracy of 98.3% on the TCGA
dataset. The comparison of our methods and other state-of-
the-art on this task can be found in table I. Even using
the same dataset, the samples and raw data are different
among these methods. So the accuracy can only be used
as a reference index. From this table, we can find our model
also show outstanding performance.

Study Approach Accuracy

Sun et al.[11] Deep Learning 98.2%
Peng et al. [21] et al Unsupervised clustering 92%
Ours Ensemble Deep Learning 98.3%

TABLE I
Tumor Type identification result on TCGA Data set: from
this table, we can find that our model shows a state-of-the-
result on the TCGA dataset.

D. Result on Cancer Origin Classification

Our approach achieves an accuracy of 96.1% for the task
cancer origin classification among 19 different types. The F1
score of different types of cancer can be found in figure 5.
We can find that even if the fewer feature model uses only
half of the RNA features in the full model, its performance
does not decrease so much. Among all of these cancers,
the F1 score of Stomach and Esophagus is relatively poor.
This phenomena can also be found in figure 4. What’s more,
we can found that nearly half of Esophagus cancer samples
are mistakenly recognized as Stomach samples. This might
be attributed to the fact that esophagus and stomach own
similar and continuous epithelial tissues. Besides, esophageal
adenocarcinomas resemble a subset of gastric cancers, which
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Fig. 4: This figure shows the confusion matrix of both few feature model and full feature model. The left figure is the model
with selected features and the right figure is the model with full features. It can be found that most types of cancer show a
plausible result on the TCGA dataset. Moreover, both of selected model and full feature model show similar performance
– 100% accuracy on Prostate gland and Thyroid gland, relatively low performance on Stomach and Esophagus.

Fig. 5: This figure shows the F1 score of our model on
nineteen different cancer origins classification tasks. The red
bar is the model trained with all of the features and the blue
bar shows the result of half of the features. From this figure,
we can see fewer features model show comparable results
with the full feature model. The overall performance of both
models is plausible – eighteen different types of cancers have
an F1 score over 0.8.

suggest that these two cancers could be considered a single
disease entity as previously reported[19].

We also compare our model with other state-of-the-art
methods in this task(see table II). However, as the number
of samples and the classification types of these models are
different, these models’ performance can not be reflected by

the accuracy.

Study Method ACC types

Sun et al.[11] Deep Learning 98.2% 11
Li et al. [22] K nearest neighbors 95.6% 31
Wei et al [23]. Logistic regression 90.5 % 26
Tang et al [24]. Random forest 96.3 % 14
Laplante et al. [10] Deep Learning 96.9% 20

Ours(few) Ensemble Lightgbm 94.7% 19
Ours(full) Ensemble Lightgbm 96.1% 19

TABLE II
Cancer origins classification result on TCGA dataset: in this
table, we can compare our model and other state-of-the-art
methods of cancer origins classification task on the TCGA
dataset. This table shows our method state-of-the-art in this
area.

E. Performance on External Validation Dataset

To evaluate the robustness of our model, we test our model
in five different external validation datasets. All of these
models are only trained on a TCGA training set and tested
directly with this data. It should be noticed that the raw data
of these five datasets are preprocessed with TCGA steps.
The detailed reuslt can be found https://github.com/
GARYXTY/TCGA-Project.

From tumor identification problem, the average perfor-
mance is relatively good with a 92.6% accuracy of all of
the datasets. For a cancer origin classification problem, the
performance is not so good as the result on the TCGA
dataset. However, from table III, we can find that the result
is similar with TCGA testing dataset – cancers like cervix
uteri(rank 17 in F1 score) and Stomach (rank 18 in F1
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score)’s performances are relatively bad, Kidney(rank 10 in
F1 score) and breast(rank 5 in F1 score) show impressive
results.

Dataset Samples(n/type) TC CTC(full) CTC(few)

Havas et al. 14(Breast) 100% 92.86% 92.86%
Xu et al. 12(Breast) 58.33% 100% 100%
Zhang et al. 68(Cervix uteri) 100 % 85.29 % 70.59%
Yao et al. 20(Kidney) 75% 100 % 100%
Yan et al 21(Stomach) 100 % 52.38 % 52.38%

All 135 92.6% 84.44% 77.4%

TABLE III
Performance of Our Model on External Dataset: TC means
Tumor Classification, CTC means cancer type classification,
full and few mean if we use all of the features to train the
model.

IV. CONCLUSIONS

In this work, we proposed an assemble learning model
dealing with tumor classification and cancer classification
problems. For a tumor identification problem, we deploy
a deep-learning-based assemble method. It achieves 98.2%
accuracy on the TCGA task and 92.6% accuracy in this task.
For the cancer origins classification problem, we deploy a
lightgbm based assemble method. We use both full features
and selected features in this model. Even the model-based
selected features are only half of the full features based
model, it comparably high performance on TCGA data. Also,
validation experience on the external datasest shows the
robustness of our model.

In the future, we will continue elevating the performance
of this model. Even though our model’s overall performance
is state-of-the-art on TCGA dataset, there are still some
drawbacks of our model. For instance, our model can hardly
identify gastric and esophageal cancers. The input gene
expression data are limited to RNA-seq data on Illumina
platforms, which means array-based transcript quantification
methods could not be directly used. We enrolled five groups
of genes to infer sample characteristics, however, we do
not uncover specific biological links between genes and
outcomes.
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[12] Tomczak, K., Czerwińska, P., Wiznerowicz, M. (2015). The Cancer
Genome Atlas (TCGA): an immeasurable source of knowledge. Con-
temporary oncology, 19(1A), A68.

[13] Lin, T. Y., Goyal, P., Girshick, R., He, K., Dollár, P. (2017). Focal loss
for dense object detection. In Proceedings of the IEEE international
conference on computer vision (pp. 2980-2988).

[14] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... Liu, T. Y.
(2017). Lightgbm: A highly efficient gradient boosting decision tree.
Advances in neural information processing systems, 30, 3146-3154.

[15] Chen, T., Guestrin, C. (2016, August). Xgboost: A scalable tree
boosting system. In Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery and data mining (pp. 785-794).

[16] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ...
& Ghemawat, S. (2016). Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

[17] Kingma, D. P., Ba, J. (2014). Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

[18] Glorot, X., Bengio, Y. (2010, March). Understanding the difficulty
of training deep feedforward neural networks. In Proceedings of
the thirteenth international conference on artificial intelligence and
statistics (pp. 249-256). JMLR Workshop and Conference Proceedings.

[19] Cancer Genome Atlas Research Network. (2017). Integrated genomic
characterization of oesophageal carcinoma. Nature, 541(7636), 169.

[20] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M. (2019, July).
Optuna: A next-generation hyperparameter optimization framework.
In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery data mining (pp. 2623-2631).

[21] Peng, L., Bian, X. W., Xu, C., Wang, G. M., Xia, Q. Y., Xiong,
Q. (2015). Large-scale RNA-Seq transcriptome analysis of 4043
cancers and 548 normal tissue controls across 12 TCGA cancer types.
Scientific reports, 5(1), 1-18.

[22] Li, Y., Kang, K., Krahn, J. M., Croutwater, N., Lee, K., Umbach,
D. M., Li, L. (2017). A comprehensive genomic pan-cancer classi-
fication using The Cancer Genome Atlas gene expression data. BMC
genomics, 18(1), 1-13.

[23] Wei, I. H., Shi, Y., Jiang, H., Kumar-Sinha, C., Chinnaiyan, A. M.
(2014). RNA-Seq accurately identifies cancer biomarker signatures to
distinguish tissue of origin. Neoplasia, 16(11), 918-927.

[24] Tang, W., Wan, S., Yang, Z., Teschendorff, A. E., Zou, Q. (2018).
Tumor origin detection with tissue-specific miRNA and DNA methy-
lation markers. Bioinformatics, 34(3), 398-406.

1665


