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Abstract—Subjective cognitive decline (SCD) is a preclinical 

stage before cognitive impairment, which has a high conversion 

risk into Alzheimer's disease. However, it is still unknown on the 

brain functional differences between SCD and healthy controls 

(HC) subjects. This study therefore proposed a complex brain 

network analysis based on graph theory. In this study, we 

selected functional magnetic resonance imaging (fMRI) scans 

from Xuanwu Hospital of Capital Medical University, including 

27 SCD and 42 HC subjects. First, we constructed brain 

functional connectivity network to obtain brain network 

topology parameters, including clustering parameters, shortest 

path length, global efficiency, local efficiency, small world 

attributes, and modularity. Then, we compared differences on 

the parameters between two groups. As a result, both SCD and 

HC groups showed the characteristics of small world. Both 

global efficiency and local efficiency of HC groups were higher 

than those of the SCD group. In addition, we found that the 

global modularity of the SCD group (6 modules) was higher 

than the HC group (7 modules). Our findings indicated that 

there were differences in brain functional networks between 

SCD and HC groups. Graph theory analysis may be useful and 

helpful to discriminate SCD and HC subjects. 

     Keywords—subjective cognitive decline (SCD), Alzheimer’s 

disease (AD), functional magnetic resonance imaging (fMRI), 
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I. INTRODUCTION 

Alzheimer's disease (AD) is one of the most common 
progressive neurodegenerative diseases, which causes 
irreversible damage to the memory and other cognitive 
functions of the elderly in modern society. Currently, there is 
no effective drug treatment [1]. Subjective cognitive decline 
(SCD) is the preclinical stage of AD [2]. Although there is no 
evidence of AD like pathological features in the pathogenesis 
of SCD, more and more studies support the correlation 
between SCD and AD characteristics. Therefore, SCD has 
been widely considered as a high-risk stage before cognitive 
impairment [3]. 

In recent years, the development of various imaging 
technologies makes it possible to analyze brain functional 
networks for AD [1]. As a frequently used functional imaging, 
functional magnetic resonance imaging (fMRI) based on 
blood oxygen level dependence (BOLD) has been widely used 
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in AD research [4]. In addition, the complex brain network 
analysis based on graph theory has been widely used in AD, 
which provides a new perspective for AD diagnosis [5]. 
However, it is still unknown on the brain functional 
differences between SCD and healthy controls (HC) subjects. 

Therefore, this study constructed and compared the brain 
functional network of the SCD and HC groups, trying to 
determine the differences of brain function between the two 
groups, and seek the imaging sensitivity characteristics of 
SCD, so as to provide an important basis for SCD research. 
The outcomes of this study may provide new insights into the 
pathogenesis of AD in the preclinical stage. 

II. MATERIALS AND METHODS 

A. Participants, imaging scanning and preprocessing 

The experimental data used in this study were all recruited 
from the memory clinic of the Neurology Department of 
Xuanwu Hospital, Beijing, China. The inclusion criteria of 

SCD is as follows [6]： (1) self-reported memory has 

continued to decline compared to the previous (within 5 
years); (2) Mini-Mental State Examination (MMSE) and 
Montreal Cognitive Assessment (MCA) scores are within 
normal ranges; (3) non-clinical depression (GDS score < 6). In 
addition, the SCD subjects would be excluded if subjects exist 
severe depression, stroke, cognitive decline caused by disease, 
history of psychosis or traumatic brain injury. All the HC 
subjects were right-handed people of Han nationality and had 
no history of cognitive impairment or other related mental 
diseases. Finally, this study included 69 participants. Among 
them, 27 were SCD and the rest were HC. Clinical 
characteristics including age, sex, education, Mini-mental 
state examination (MMSE), Montreal cognitive assessment-B 
(MoCa-B) and Global deterioration scale (GDS) were 
collected and listed in Table 1. As a result, there was no 
difference between the two groups in clinical characteristics. 

TABLE I. THE CLINICAL DATA OF TWO COHORTS 

 HC(n=42) SCD(n=27) P value 

Age 66.2±4.2 65.6±4.5 0.575b 

Education 12.9±2.9 12.4±2.7 0.520b 

Male/Female 19:23 7:20 0.106a 

MMSE 28.9±1.2 28.8±2.0 0.830b 

MoCA-B 26.1±1.9 26.6±2.0 0.299b 

GDS 2.2±3.1 2.7±2.3 0.499b 

Values are presented as the mean ± standard deviation (SD). 

a the p value was obtained by χ2 test, b the p value was obtained by two-sample t tests 

All SCD and HC subjects were scanned with 3.0T 
superconducting MR and 12 channel phased array coils. 
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Gradient echo plane pulse sequence was used to collect resting 
state fMRI data. The scanning range covered all brain tissues 
from skull base to skull top. Scanning parameters (nearly 7 
min) were as following: repetition time (TR) / echo time (TE) 
= 2000 / 30 ms, 3.5 mm slice thickness, 0.7 mm slice spacing, 
224 × 224 field of view, 64 × 64 matrix, 90 ° rotation angle, 
240 time points were collected, scanning time was 6 min and 
40 s. 

The preprocessing of fMRI data was carried out using the 
Data Processing Assistant for Resting-state fMRI (DPASF; 
http://www.rfmri. org/DPARSF). The first 10 time points 
fMRI images were discarded to achieve magnetization 
balance. The rest of the time-point images were initially 
corrected. The corrected images were aligned with the average 
image of all images with respect to time for head movement 
correction. Then, we positioned the functional image on the 
structural images for registration. Finally, all images were 
normalized to Montreal Neurological Institute (MNI) standard 
space with a 3mm ×3mm ×3mm spatial resolution, and were 
spatially smoothed (8 mm FWHM of Gaussian kernel), 
linearly DE trended and temporally filtered (0.01-0.08 Hz). 
The amplitude of low frequency fluctuations (ALFF) maps 
and fractional amplitude of low frequency fluctuations 
(f/ALFF) maps were then calculated and normalized by the 
global mean and standard deviation of ALFF values within a 
whole brain mask.   

B. Brain Network Construction 

In this study, we constructed 90 brain network matrices to 
analyze the topological characteristics of brain functional 
network. The first step was to define the nodes of the brain 
network. We selected the Standardized Automated 
Anatomical Labeling (AAL) template (90 regions of interest) 
as the mask to extract brain regions as nodes. The average 
voxel value of each node was calculated and normalized, and 
the average voxel was used as the node value. Secondly, an 
interrelated correlation matrix was calculated based on partial 
correlation coefficients, while eliminating the influence of 
covariance such as age, gender and education. Finally, after 
obtaining the correlation coefficient matrix, the sparse 
threshold method was used to determine whether there was a 
connection between each two nodes. The correlation 
coefficient matrix was then transformed into a binary matrix 
set with different sparsity thresholds. In this study, in order to 
ensure that there were no isolated nodes in the brain network 
under the full sparsity threshold, we used 0.09 as the start of 
sparsity. We set 0.01 as the interval and 0.5 as the end of the 
sparsity. 

C. Brain Network Analysis 

In order to describe the topologic organization of the brain 
network, the following parameters were calculated: clustering 
coefficient (C), shortest path length (L), local efficiency 
(localE), global efficiency (globalE), and small-world 
parameters including gamma, lambda and sigma. The 
clustering coefficient C represents the degree of aggregation 
of nodes in the network graph. The shortest path length 
reflects the speed of information transmission between two 
nodes. The shorter the length of the shortest path is, the faster 
the information transmission rate is. The local efficiency and 
global efficiency indicate the efficiency of exchanging 
information in the whole network or local network 

respectively. The small world parameters show the metrics of 
the network. The small world network satisfies when the 
gamma and sigma values are much greater than 1, and the 
lambda value is equal to 1. 

We also calculate the modularity of each network. The 
module is defined as a set of relatively sparse connections with 
the nodes in the external module, while the nodes in the 
internal module are highly interconnected. This concept was 
first proposed by Newman and Girvan in 2004 [7]. It has been 
widely used as a result of the division of quantitative modules. 
In this study, we applied the grey optimization method 
proposed by Clauset to calculate modularity [8]. The formula 
is as follows: 

M = ∑ [
𝑙𝑆

𝐿
− (

𝑑𝑆

2𝐿
)

2

]
𝑁𝑀

𝑆=1

(1) 

where 𝑁𝑀 means the number of modules, L is the total number 

of edges in the whole network, 𝑙𝑆 is the total number of edges 

connecting two nodes in module S, and 𝑑𝑆 is the total degree 

of all nodes in module S. It is generally considered that the 

maximum value of network modularity m > 0.3 indicates that 

the network has the modular structure. 

D. Statistical analysis 

Demographic characteristics were compared between SCD 

and HC groups using two-sample t test or the chi-square t test. 

The comparison of the brain network parameters under the 

same sparsity between the two groups were all using the 

two-sample t test. All statistical analyses were performed in 

SPSS Version 22.0 software (SPSS Inc., Chicago, IL). All P 

value < 0.05 was considered significant differences. 

III. RESULTS 

A. Construction of brain network 

Figure 1 showed the partial correlation matrix. In the 
partial correlation matrix, the color corresponds to the 
correlation coefficient. The axis represented 90 brain regions 
in AAL template. 

 

Figure 1. The partial correlation coefficient matrixes of the SCD and HC 
groups. 

B. Network parameters 

Fig 2 showed the results of network parameters including 
C, L, localE, globalE, gamma, lambda and sigma under 9% to 
50% sparsity in two groups. 

Compared with HC group, SCD group has lower cluster 
coefficient under all sparsity settings. The clustering 
coefficients of the two groups increased with the increase of 
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sparsity threshold. As for the shortest path length L, the 
values of the SCD group and the HC group are very close. 
Both global efficiency and local efficiency of HC group were 
higher than those of SCD group, and increased with the 
increase of sparsity threshold. However, the local efficiency 
of SCD is significantly higher than that of HC.  Both HC and 
SCD groups showed that gamma >> 1, lambda ≈ 1 and sigma 
>> 1 in all sparse matrices. 

 

Figure 2. Network parameters including C, L, globalE, localE, Gamma, 
Lambda, Sigma. The abscissa is sparsity from 9% to 50%. The blue curve 
represents HC group and the red curve represents SCD group. 

C. Modularity and module structure 

Figure 3 showed the trend of global modularization in two 
brain networks with 9-50% sparsity. We found that when the 
modularity was greater than 0.3, the sparsity threshold was 
less than 20%, and both SCD and HC groups had modularity. 
The modularity of brain network decreased with the increase 
of sparsity threshold. When the sparsity threshold was 10%, 
the modularity of the SCD group was 0.52, while that of the 
HC group was 0.51.  

 

Figure 3. Modularity of the HC and SCD groups. 

Figure 4 shows a visualized brain network diagram with a 
sparsity threshold of 9% (minimal value to guarantee full 
connection of network). The seven modules of HC were 
recorded as Module H1-H7. Module H1 included anterior 
central gyrus, middle frontal gyrus, inferior insular gyrus, 
inferior triangular gyrus and central sulcus tectum; module 
H2 included dorsolateral superior frontal gyrus, medial 
superior frontal gyrus, orbital superior frontal gyrus and 
rectus gyrus; module H3 included orbital inferior frontal 
gyrus, insula, hippocampus, anterior cingulate gyrus and para 
cingulate gyri, amygdala and para hippocampal gyrus; 
module H4 included cortex, cuneiform lobe and occipital 
cortex around talus fissure Module H5 included thalamus, 
caudate nucleus and lenticular nucleus, pallidum; module H6 
included medial and para cingulate gyrus, superior parietal 
gyrus, inferior parietal angular gyrus and superior marginal 
gyrus; module H7 includes inferior temporal gyrus, middle 
temporal gyrus and temporal pole. 

The brain network of SCD group was divided into six 
modules, which were recorded as module P1-P6. Module P1 
included orbital superior frontal gyrus, orbital middle frontal 
gyrus, rectus gyrus and caudate nucleus; module P2 included 
insular inferior frontal gyrus, trigonal inferior frontal gyrus, 
posterior cingulate gyrus and angular gyrus; module P3 
included inferior occipital gyrus, fusiform gyrus, cuneiform 
lobe and lingual gyrus; module P4 included supplementary 
motor area, anterior central gyrus, dorsolateral superior 
frontal gyrus; module P5 included thalamus, caudate nucleus, 
lenticular nucleus, pallidum; module P6 included thalamus It 
includes superior, middle and inferior temporal gyrus, 
temporal pole, hippocampus, para hippocampal gyrus and 
amygdala.  

HC SCD

 

Figure 4. Visualized brain connectivity of  HC and SCD groups (left is HC, 
right is SCD). 

IV. DISCUSSION 

A. Between-group comparisons 

A large number of studies have shown that human brain 
functional networks had small world properties, while 
networks with neurological diseases have been transferred 
from random networks into conventional networks [9]. In this 
study, both SCD and HC groups showed small world 
properties. We found that when the sparsity increases, the 
sigma of both the SCD group and the HC group will decrease 
and become close.  This result meant that the brain network of 
SCD group was similar to that of HC group. Therefore, graph 
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theory analysis showed that SCD was not a neurological 
disease, which was consistent with previous studies. 

In this study, the clustering coefficient of SCD group was 
significantly lower than that of HC group. Clustering 
coefficient represented the connection efficiency between 
nodes and surrounding nodes, which meant that SCD group 
has the ability of local integration and information processing 
[10]. As for the shortest path length, SCD group was still 
slightly higher than HC group. The shortest path length 
represented the rate of information transfer between nodes 
[11]. The ability to transmit information between nodes 
decreased in SCD group compare to HC group. 

In addition, both the global efficiency and the local 
efficiency of HC group were higher than those of SCD group. 
Some studies also found that the overall efficiency of AD 
group in the whole brain was significantly reduced [12]. Our 
study was consistent with previous research. 

B. Modularity and module structure 

Using module analysis, we reflected the properties and 
functional connections of brain network. The results of this 
study showed that the number of brain network modules in 
the SCD group is reduced, which is consistent with previous 
studies [13]. As shown in Figure 4, we observed that the 
connection of the SCD group in the frontal lobe was lost, 
which was related to memory loss. In addition, the connection 
of the angular gyrus in the SCD group was also lost, which 
was related to visual and auditory functions. Therefore, when 
the connection is poor, it will cause a series of obstacles. This 
is also consistent with previous research [14]. 

C. Limitations 

Although differences could be observed between SCD 
and HC using brain network analysis, there were some 
limitations that need to be considered. First of all, there were 
not many data samples, which meant that the experimental 
results cannot fully represent all SCD subjects. Secondly, 
AAL template with 90 regions was used in this study. The 
brain template used was symmetrical, but actually individual 
human brain had various shapes. So it would lead to some 
differences in biased results. Thirdly, the partial correlation 
matrix was used to calculate the network parameters. This 
might lead to biased results. We planned to use other 
correlation matrix to see the differences in the future.  

V. CONCLUSION 

In this work, we used graph theory method to analyze the 

differences of brain functional networks between SCD and 

HC groups. The results showed that both groups showed the 

properties of small world, while the SCD group showed the 

enhancement of small world characteristics. Both groups 

showed modularity, and the modularity of SCD group was 

enhanced. Our findings indicate that the brain function 

network between SCD and HC subjects has changed. In 

addition, graph theory analysis may be useful and helpful to 

discriminate SCD and HC subjects. 
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