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Abstract— Chagas disease is a widely spreaded illness caused
by the parasite Trypanosoma cruzi (T. cruzi). Most cases go
unnoticed until the accumulated myocardial damage affect
the patient. The endomyocardium biopsy is a tool to evaluate
sustained myocardial damage, but analyzing histopathological
images takes a lot of time and its prone to human error,
given its subjective nature. The following work presents a deep
learning method to detect T. cruzi amastigotes on histopatho-
logical images taken from a endomyocardium biopsy during
an experimental murine model. A U-Net convolutional neural
network architecture was implemented and trained from the
ground up. An accuracy of 99.19% and Jaccard index of
49.43% were achieved. The obtained results suggest that the
proposed approach can be useful for amastigotes detection in
histopathological images.

Clinical relevance— The proposed method can be incorpo-
rated as automatic detection tool of amastigotes nests, it can
be useful for the Chagas disease analysis and diagnosis.

I. INTRODUCTION

Chagas disease is a parasitic disease endemic from
Latin America and caused by the flagellated protozoan
Trypanosoma cruzi (T. cruzi). It can be transmitted
to human beings via hematophagous insects from the
subfamily Triatominae. There are several strains of T. cruzi,
each one presenting tropism for different cells. In Mexico,
30% of symptomatic infected people develop a serious
cardiomyopathy due to the accumulated myocardial damage
during the years prior to diagnosis. The damage varies from
minor affectations to end-stage heart failure. It is estimated
that Chagas disease affects around 6 to 7 million people
in Latin America; 300,000 in United States and between
80,000 to 120,000 in Europe. In México, even though the
oficial records report few hundreds of cases each year, it is
believed that there are at least 1.1 million people infected
with T. cruzi, while 29.5 million at risk of infection. The
World Health Organization has classified Chagas disease as
one of the least attended tropical diseases [1, 2, 3, 4, 5].
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T. cruzi goes through several morphological stages during
its lifecyle. Inside triatomine’s intestine it multiplies and
develops into metacyclic tripomastigote. Then, when the
triatomine bites a human and defecates into the wound, T.
cruzi travels via the circulatory system, thus becoming a
sanguine tripomastigote. Later on, it will transform into
amastigotes to infect cells from the phagocytic system,
lymphoid, muscular or nervous tissue. Amastigotes’ most
prominent features are their ovoid figure and ability to
multiply via binary fission [1].

Comparing the 1.1 million estimated cases of Chagas
disease in Mexico with the 5463 cases reported in official
records across 2000-2012, a huge gap between them
is easily spotted [2, 6]. The majority of these cases
might have been unnoticed until the patient presented a
cardiomiopathy. Chagas heart disease is characterized by
T. cruzi amastigotes infecting myocardium tissue, which
may induce inflammation of the four cardiac chambers,
and later on, cardiomegaly and increased cardiac mass.
Histological samples show amastigotes nests accumulate
inside myofibers, resulting in cardiac fibrosis, degeneration
and necrosis [7]. However, histological analysis of the
samples by photomicrography can take a lot of time and
the correct detection of nests is observer-dependent [8].
Since 1999, the interest in developing algorithms for
computational assisted diagnosis (CAD) has grown with
the purpose of reducing pathologists’ workload. Nowadays,
methods derived from deep learning are the most successful
and studied ones [8]. The purpose of this work is to
train a convolutional neural network (CNN) with U-Net
architecture for the detection of T. cruzi amastigotes’ nests
in histopathological images taken during an experimental
murine model.

Despite the attention that Chagas disease has received
in recent years, few research has been conducted regarding
machine learning or deep learning applications. That is why
similar works with different diseases have been considered
for comparison, e.g. malaria and leishmaniasis.

In 2013, Cetina et al. [9], proposed T. cruzi detection during
its sanguine tripomastigote stage in blood smears using a
Gaussian discriminant analysis, reporting a sensibility of
98.333% and specificity of 15.63%. In 2015, the same
authors used a support vector machine (SVM) in combi-
nation with AdaBoost, obtaining a sensibility of 100% and
specificity of 93.25%. In 2017, Mehanian et al. [10], utilized
CNNs to identify and quantify the presence of malaria
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parasites Plasmodium falciparum in blood smears, achieving
a sensibility of 91.6%, specificity of 94.1% and precision
of 89.7%. In 2018, Goérriz et al. [11], applied the U-net
architecture for segmentation and classification of leishmani-
asis parasites, reporting a precision of 75.7% and dice score
of 77.7% regarding amastigotes. Finally, in 2020, Ojeda et
al. [12], implemented a CNN with U-net architecture for
segmentation of T. cruzi sanguine trypomastigote in blood
samples, reporting a F2 of 80%, recall value of 87.02%,
precision of 63.04% and dice score of 68.25%.

II. MATERIALS AND METHODS
A. Dataset

A set of 767 histopathological images with hematoxylin
and eosin stain obtained from an experimental murine model
were used. The samples were taken from 9 infected mice
during the acute stage of the disease, specifically at days 25,
30 and 35 post-inoculation with 1000 blood trypomastigotes,
as approved by the Ethics Committee. All images have a
resolution of 2592 x 1944 pixels and were acquired with
two different microscopes.

From these 767 images, 33 were reserved for the final
test. MATLAB Image Processing Toolbox R2020a was used
to make the manual binary mask segmentations (ROIs) for
each nests of amastigotes. The manual segmentations were
validated by an expert in parasitology. The resulting images
were resized to 512 x 512 pixels in order to reduce the
number of inputs of the neuronal network.

B. Data augmentation

The absence of medical images data is one of the chal-
lenges faced when implementing deep learning algorithms,
since working with few images and low variability could
incite over-fitting. Data augmentation is one solution to solve
this problem. This process expands the original data by
applying different transformations to create new data. Thus,
the generalization of the model and precision is improved, as
well as its robustness for not seen data. There is proof that
geometrical, contrast and brightness operations lead to better
results [13]. The following transformation were chosen for
the data augmentation process: 90 and 180 degrees rotations,
random rotations between -45 and 45 degrees, reflections
along the vertical and horizontal axis, changes in contrast
and brightness levels; and spectral changes in the RGB
components. 11,508 images were obtained for training and
validation split following the data augmentation procedure.

C. U-Net Architecture

The U-Net is a convolutional neural network architecture
design for image segmentation or detection applications. Its
structure allows to obtain results while reducing training
time. It is divided into two paths; the first path is known
as the contracting path or encoder, the second path is called
the expansive path or decoder; which gives it a symmet-
rical u-shaped structure. The contraction path provides the
classification information, while the expansion path allows
the network to learn localized classification information.
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Fig. 1: U-Net architecture

There is a series of skip-connections between different layers
from the contracting path and the expansive path called
concatenations, they convey feature maps from one to the
other. Moreover, the U-net architecture solved the persistent
problem of missing pixel-level context information needed
for medical image analysis, as shown in [14, 15].

The contraction path applies two 3x3 convolutions, using
ReLu as the activation function. Then, a 2x2 max-pooling
operation is applied. This process is repeated five times, each
time increasing the kernel size as the U-Net architecture
shows (Fig 1). Later, the expansion process begins, which
consists of several 2x2 up-samplings along with concatena-
tions of the contraction path map of features. The process
is repeated until reaching the contraction path length. At the
end, a 1x1 convolution with two filters is used to map each
component feature vector to the desired number of classes in
order to generate the output pixel-wise segmentation mask.
Which gives us a total of 23 layers and 1,941,105 trainable
parameters [14].

The computational processing was conducted in the Lab-
oratorio Universitario de Computo de Alto Rendimiento
(LUCAR) from the Universidad Nacional Auténoma de
México (UNAM), with an Ubuntu Server 18.04.2 LTS with
the following characteristics: 2x Intel Xeion E5-2640@2.5
GHz with 24 threads. A RAM memory of 64 GB along with
a GPU Nvidia Tesla K20.

D. Training and Validation

To verify the reproducibility of the model and validate
the results, a 5-Fold Cross—Validation method was used,
where 90% of the images was used for training (n=10,357)
and 10% for final validation test (n=1,151). The following
parameters were chosen to train the network from the ground
up: Adam gradient optimizer, binary entropy as loss function
and fifty epochs. The metrics used to assess the model were
binary accuracy and Jaccard Index. The Jaccard Index (1) is
a measure of the relationship between the intersection of area
with the area of the union of the original (A) and predicted
mask (B).
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Once pixels were classified, each region of the parasites can
be counted considering connected component labeling. Then,
two tests were carry out. The first test, named final test,
was done with the original images; while the second test,
named final test - Reinhard, was done using Reinhard [16]
color normalization method given that Tellez er al. (2019)
recently quantify the positive effects of color normalization
on histopathological images for deep learning applications.
In order to compare our results with another machine lean-
ing algorithm, an SVM was trained to perform the same
segmentation task [17]. The SVM was fed with a set of
intensity features, in addition to entropy, median and mean
filters with an analysis window of 11x11 pixels. The kernel
used was a radial basis function; the SVM hyperparameters
were optimized by a grid.

J(A, B)

(D

III. RESULTS AND DISCUSSION

Table I shows the performance of U-Net and SVM
classifiers. In first section (rows 2 and 3), it can be
seen that the performance of the U-Net outperform the
obtained results by the SVM with 98% vs. 76% for binary
accuracy and 49% vs. 41% for Jaccard index. These results
are consistent in the final tests, where the U-Net is the
algorithm with the best performance (up to 99.7 % for
accuracy and 74% according to the Jaccard index). Finally,
it can be observed that the incorporation of the reinhard
algorithm helps to obtain a better performance in all cases
(table I section 2 vs. section 3). In Fig. 2, 2 two examples
of nests detection by U-Net are shown. The case with minor
error, first row, obtained a difference of nests and predicted
area of 3 and 15 pixels respectively, regarding the original
mask. On the other hand, the case with major error, had
a difference of nests and predicted area of 15 and 3870
respectively.

Given that the aim of this work was to detect T. cruzi
amastigotes nests, the U-Net gave good results predicting
the masks, but since the number of nests as well as the
area of each one of them differs considerably from the

TABLE I: Metrics comparisons: training, final test, final test
Reinhard

N . Binary Jaccard
Validation Classifier Accuracy (%)  Index (%)
Cross U-Net 98.19+0.006  49.43+0.009
Validation SVM 76.264+4.71 41.0643.21
Final Test U-Net 99.63 49.57
SVM 78.86 40.35
Final Test U-Net 99.70 74.30
Reinhard SVM 82.05 57.32

Fig. 2: Representative examples of two segmentations ob-
tained. The worst result is shown in first column, and the best
segment obtained in second column. (A-B) Original images;
(C-D) Manual annotations; (E-F) Automatic segmentations
and (G-H) confusion matrix overlay (Cyan: true positives,
Magenta: false positives, Yellow: false negatives and Black:
true negatives).

original and predicted mask it did not achieved a high
value with Jaccard index. Which led to believe that the
task of manual mask segmentation should be improved. The
accuracy obtained was high, as shown on Table 1, but it
can be misleading considering the great amount of pixels
categorized as true negatives (background). This due to into
an imbalance of classes that simplify the work of the network
to recognize the background, which in turn can be seen in the
normalized confusion matrix, where the network achieved
99.71% accuracy in predicting true negatives (background).

Something to highlight is that the variability of colors in
images decreased the performance of the network, as shown
in table I. Another problem faced by the network were
the different artifacts that some images had, like smudges
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and blurry areas. Its important to notice that the network
predicted ROIs that were not present in the original masks,
but might be indeed T. cruzi’s nests, although there wasn’t
enough certainty during the manual segmentation to mark
them.

This led to believe that increasing the number of images
and variability would help the network identify better the
nests even when different stain colors and artifacts hinder
the process. Furthermore, consulting more experts to validate
the ROIs would help to include as much nests as possible
in each mask. To tackle the class imbalance problem, the
images could be divided into quadrants with better nests-
background ratio.

IV. CONCLUSION

This work has proven the efficiency of the U-net architec-
ture in detecting Trypanosoma cruzi amastigotes’ nests to re-
duce pathologists workload and increase reliability. Promis-
ing results were obtained: accuracy of 99.19% =£0.00637
and a Jaccard index of 49.43% =£0.00986, but there are
options for improvement as the challenges encountered need
to be solved to improve performance. The accuracy of the
U-Net at creating a mask seemed to be highly related to
the manual segmentation task. Color differences and image
quality also play an important role during training, as the
comparison between experiments shows. Accuracy does not
give too much information when evaluating masks, given the
background - nests ratio. As mentioned before, there are not
published works reporting on the application of machine or
deep learning methods for automated detection of T. cruzi’s
nests in histopathological images, hopefully in the near future
similar works will be found to make a thorough comparison
between different architectures and methods.
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