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Abstract— Mortality risk is a major concern to patients who
have just been discharged from the intensive care unit (ICU).
Many studies have been directed to construct machine learning
models to predict such risk. Although these models are highly
accurate, they are less amenable to interpretation and clinicians
are typically unable to gain further insights into the patients’
health conditions and the underlying factors that influence
their mortality risk. In this paper, we use patients’ profiles
extracted from the MIMIC-III clinical database to construct
risk calculators based on different machine learning techniques
such as logistic regression, decision trees, random forests, k-
nearest neighbors and multilayer perceptrons. We perform an
extensive benchmarking study that compares the most salient
features as predicted by various methods. We observe a high
degree of agreement across the considered machine learning
methods; in particular, age, blood urea nitrogen level and the
indicator variable - whether the patient is discharged from the
cardiac surgery recovery unit are commonly predicted to be
the most salient features for determining patients’ mortality
risks. Our work has the potential to help clinicians interpret
risk predictions.

I. INTRODUCTION

Risk calculators are tools used by healthcare providers to
estimate the probabilities of chronically ill or Intensive Care
Unit (ICU) patients experiencing adverse clinical outcomes
such as health complications, readmission to hospital, or
mortality, and to then identify and screen high-risk patients.
In the context of patient mortality, severity scores such
as Simplified Acute Physiology Score (SAPS-II) [1] and
sequential organ failure assessment (SOFA) [2] have tradi-
tionally been used to predict hospital mortality. These scoring
systems predict mortality by feeding a fixed set of pre-
dictor variables, including various laboratory measurements
and vitals, into simple models such as logistic regression.
The simplicity of these models limits their accuracy, and
benchmarking studies [3] have found that automated risk
calculators based on machine learning, that train supervised
learning models on Electronic Health Record (EHR) data,
tend to be far more accurate.

However, a drawback of using nonparametric machine
learning models is that these models tend to be less inter-
pretable than the simple models used in traditional scoring
systems, i.e. it is not always transparent what motivates their
predictions. This paper investigates the problem of building
a risk calculator that is not only accurate but interpretable.
We focus on the task of predicting the 28-day mortality of
ICU patients at discharge, but note that the observations and
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principles applied to this work are broadly applicable to the
tasks of predicting other adverse clinical outcomes using
EHR data.

There is a considerable body of literature on the problem
of ICU mortality prediction. Typically, this literature uses
data from the first 24 to 48 hours of a patient’s stay to predict
in-hospital mortality. The 2012 PhysioNet Computing in
Cardiology Challenge called for machine learning solutions
to address the task of predicting in-hospital mortality for
patients who stayed in the ICU for at least 48 hours [4].
The winning team developed a novel Bayesian ensemble
learning solution and achieved an AUC of 0.86 [5]. In the
present paper, however, we study the task of 28-day mortality
prediction at discharge—thus, the accuracies obtained are
not directly comparable to the results in these other papers.
Another work that investigates risk prediction at discharge is
[6], in which the authors use long short-term memory models
to predict the readmission of ICU patients within 28 days of
their discharge, based on the last 48 hours of data from their
stays.

A different stream of literature has looked at designing
risk calculators that are not only accurate but interpretable.
A number of papers [7], [8] have proposed attention neural
networks, where attention mechanisms are used to identify
important features while retaining the accuracy of deep neu-
ral networks. Some other works [9]–[11] have also employed
methods such as Shapley values, which are also used in
this paper, and local interpretable model-agnostic explanation
(LIME) to enhance interpretability. More specifically, [9]
combines Shapley values with XGBoost to predict the mor-
tality of elderly ICU patients, while [10] combines Shapley
values with Convolutional Neural Networks [12] to predict
ICU mortality.

A key difference between our paper and the literature
on interpretable risk calculators is that rather than focusing
on enhancing the interpretability of any particular machine
learning method, we perform a benchmarking study that
compares the factors influencing the predictions made by
various methods. We develop a series of risk calculators us-
ing Logistic Regression (LR), Decision Tree (DT), Random
Forest (RF), k-Nearest Neighbors (k-NN), and Multilayer
Perceptron (MLP); see Bishop’s book [13] for detailed
descriptions of these methods. In Section IV, we extract the
most influential set of variables that each calculator relies on
to make predictions. We observe that all of these calculators
arrive at a similar prediction and there is a high degree
of commonality among the learned sets of variables. From
a clinical perspective, our results are reassuring because
they suggest that these data-driven methods for performing
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prediction in clinical settings make similar conclusions, even
if the precise manner in which each method arrives at a
decision can be quite different.

In Section V, we show how the set of influential factors
derived in Section IV may be used to guide a clinician as
to how a prediction was made. However, it is important
for clinicians to understand the limitations of each model
when using the risk calculator, so to gain better insights
to the patients’ health conditions. As LR constructs linear
decision boundaries to distinguish patients’ class, this model
would not be that effective if the training data is severely
not linearly separable. Even though the DT model is highly
interpretable, slight changes in the training data may result
in a completely different tree. Unlike DT, RF is more
stable, however, it requires more computational resources to
construct and aggregate various trees. Despite its simplicity,
k-NN also requires a significant amount of memory to store
all the training data and to compute the prediction given
a large dataset of patients’ profiles. While the MLP can
deal with training data that is not linearly separable, it is
computationally intensive to train. It is thus suggested for
clinicians to use different models according to their needs.

II. METHODOLOGY

A. Cohort Selection

The data used in this study are extracted from the MIMIC-
III Critical Care Database [14], which contains the health
records of patients in Beth Israel Deaconess Medical Center
ICU from 2001-2012. For patients with multiple admissions,
we considered every admission independently. There were a
total of 61532 ICU records.

B. Feature Extraction

Our choice of features followed from studies done in
the MIMIC-III research community and in MIT Critical
Data [15]. In this study, our target variable was a binary
flag, which indicated the patient’s mortality within 28 days
of their discharge from the ICU. For our input features, we
selected 4 different data categories, namely, demographic,
laboratory measurements, severity scores and vitals.

For demographic features, we extracted the patients’
height, weight, age, ethnicity, length of ICU stay, gender and
the service unit that the patients were admitted to, namely
the Coronary Care Unit (CCU), the Cardiac Surgery Care
Unit (CSRU), the Medical Intensive Care Unit (MICU), the
Surgical Intensive Care Unit (SICU) and the Trauma/Surgical
Intensive Care Unit (TSICU). We calculated the patients’
BMIs by querying the patients’ height and weight mea-
surements that were last taken before the patients were
discharged from the ICU.

For laboratory measurement features, we extracted blood
urea nitrogen (BUN), chloride, creatinine, hemoglobin,
platelet, potassium, sodium, total carbon dioxide (TotalCO2)
level and white blood cells (WBC) count of the patients. As
these measurements might change due to the treatment the
patients received during their ICU stay, we chose to query

the patients’ measurements that were last taken before the
patients were discharged from the ICU.

We also calculated severity scores such as the patients’
SOFA score [2] and the estimated Glomerular Filtration Rate
(eGFR). The latter was calculated based on the CKD-EPI
Creatinine Equation [16].

For vitals features, we extracted the temperature, heart
rate, blood oxygen level (SpO2), systolic blood pressure
(SysBP), diastolic blood pressure (DiasBP) and mean arterial
pressure (MAP). Due to the non-stationary nature of the time
series of vital signs, we chose to take the median value of
the time series.

C. Data Processing

Out of the 61532 records, the majority of the entries had
missing height and weight features while a handful had miss-
ing features such as MAP, SpO2 and SysBP. Furthermore,
there were anomalies in the certain features such as age and
weight. We define an outlier as a value that is more than 3
standard deviations from the mean. We dropped records that
contained these anomalies and those that had missing feature
values, except for height, leaving 36330 data entries.

We then treated missing height entries as follows. As is
well known, the BMI can be expressed as the ratio of weight
and squared height. We used ordinary least squares linear
regression to regress BMI against weight and impute the
missing height entries using the derived formula

B̃MI = 5.6925 + 0.2769× weight, (1)

and the height features through the BMI ratio. We found a
strong positive correlation between BMI and weight, with an
R2 value of 0.737, justifying that our imputation procedure
is fairly accurate.

An issue that we faced with the dataset was that the
number of positively labelled records (patients who died
within 28 days of discharge) represented 7.6% of the total
data sample, contributing to a severe class imbalance. One
approach to tackle such class imbalance is Synthetic Mi-
nority Oversampling Technique (SMOTE) [17], which over-
samples the examples in the minority class, by creating new
examples from the minority class in the training data set.
This technique chooses a random minority class instance
and finds its k nearest minority class neighbors, based on
the Euclidean distance. In our data processing step, we used
the default setting for k, where k = 5, in the imblearn library.
As the generated synthetic instance is a convex combination
of that instance and one of its randomly chosen neighbors,
it would likely contain some characteristics of the minority
class due to its proximity (according to Euclidean distance).

As some of our features were categorical, we used
SMOTE-NC (Synthetic Minority Over-sampling Technique
for Nominal and Continuous) technique [17] to deal with
the categorical features in the dataset. SMOTE-NC sets the
categorical values of the generated data by choosing the
most frequent category of the nearest neighbors during the
generation process.
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D. Model Selection and Prediction

After splitting our data so that 75% of the original dataset
is treated as the training data and the remaining 25% as test
data, we applied SMOTE-NC on the training set and trained
the models 30 times.

The features were used to train LR, DT, RF, k-NN and
MLP in order to determine whether a patient would survive
within 28 days of discharge from the ICU. The parameters
of the model were estimated using 5-fold cross-validation
(CV). The hyperparameters of each model were optimised
through random and grid search. Also, in this optimisation,
a different 5-fold CV on the training set was performed. The
tuned models were tested on the test set and performances
were evaluated using the area under the receiving operating
characteristic curve (AUC), test accuracy (ACC) and recall
(REC). We then calculated the mean of the performance
metrics across the 30 trials and used the standard deviation
as the uncertainty bound. All modelling and analyses were
performed with Python, and in particular the sklearn library.

III. MODEL PERFORMANCES

In Table I, we show the performance of our trained
classifiers at predicting mortality of an ICU patient in the
test data set. With the exception of the Decision Tree model,
all our trained classifiers attained a AUC of 0.76 or greater,
and an accuracy (denoted by ACC) of 0.71 or greater. LR
achieved the best performance in terms of AUC and REC,
with 0.8 and 0.713 respectively, while the MLP prediction
model had the best performance in terms of ACC at 0.8.
Our results suggest that all trained classifiers provide fairly
accurate and reasonable performance for predicting mortality.

TABLE I
PERFORMANCE ON PREDICTING ICU MORTALITY ON TEST DATA SET

ACROSS DIFFERENT CLASSIFIERS.

LR DT RF kNN MLP

AUC 0.8
±0.008

0.696
± 0.02

0.764
± 0.007

0.761
± 0.008

0.76
± 0.009

ACC 0.744
± 0.004

0.675
± 0.065

0.742
± 0.007

0.713
± 0.005

0.8
±0.007

REC 0.713
±0.02

0.608
± 0.076

0.616
± 0.023

0.673
± 0.017

0.509
± 0.025

IV. EXTRACTING INFLUENTIAL FEATURES

Next, we extract the most influential features from each
trained classifier. We exhibit the high degree of overlap
among the influential features across different classifiers.

A. Logistic Regression

In LR, the trained classifier predicts mortality according
to the following relationship

P (Y = 1|x) = 1/
(
1 + exp

(
− (θTx+ θ0)

))
. (2)

Here, θ represents the weights of the input features, x
represents the patient’s normalized data, and θ0 represents the
offset of the decision boundary. In particular, a larger value
of θTx+θ0 corresponds to a higher probability of mortality.
As such, we can infer the most influential features as those

corresponding to the largest coefficients θi in magnitude.
In Table II, we show the features corresponding to the five
largest coefficients and the five smallest coefficients.

TABLE II
TOP 5 MOST INFLUENTIAL FEATURES BY LR

Results
Positive Influence Negative Influence

1 Age 0.586 CSRU -1.176
2 BUN 0.336 TSICU -0.444
3 Male 0.325 SICU -0.296
4 MICU 0.285 BMI -0.288
5 Heart Rate 0.273 Hemoglobin -0.198

We observed from Table II that all service units except
MICU had a negative influence on the mortality risk. We
also observed that older patients, male patients, patients
with higher blood urea nitrogen level or heart rate would
tend to have a greater mortality risk within 28 days after
their discharge. Similarly, patients that had higher BMI or
hemoglobin level would tend to have lower mortality risk.

To increase the interpretability of the model, we penalize
the logistic regression problem with an `1-norm regularizer,
i.e., we solve

min
θ,θ0

n∑
t=1

log
(
1 + exp

(
− yt(θTxt + θ0)

))
+ λ‖θ‖1. (3)

Here, λ > 0 is the regularization parameter, which we tune
via CV.

After tuning the hyperparameters with 5-fold CV and
running the model 30 times, the best estimator achieved a
test score of 0.72 ± 0.005, recall of 0.734 ± 0.021 and AUC
of 0.797 ± 0.009. We annihilated those features which had
a coefficient of zero more than half of the time [18].

TABLE III
TOP 5 MOST INFLUENTIAL FEATURES WITH NON-ZERO COEFFICIENTS IN

L1-PENALISED LR

Results
Positive Influence Negative Influence

1 Age 0.494 CSRU -1.362
2 BUN 0.236 BMI -0.198
3 SOFA 0.236 Hemoglobin -0.123
4 Heart Rate 0.22 Temperature -0.1
5 MICU 0.101 SysBP -0.016

We observed that 11 features were annihilated and clini-
cians could determine to mortality risk using the top 5 most
influential features as shown in Table III. As extreme values
of features such as BMI are not desirable for the patients,
the logistic model could not detect this intricacy because the
outcome depends linearly on the features. Hence, clinicians
need to be aware of such limitations when applying this
model.

B. Decision Tree

To obtain an interpretable model, we restricted the learned
DT model to a maximum depth of 5 tiers. One approach to
find out which features are more influential in a DT model
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is to compute the Gini Importance of each feature. This is
given as the decrease in Gini impurity weighted by the node
probability where the Gini impurity of a certain node is

G(p1, p2) = 1− p21 − p22, (4)

where pi is the probability of picking a data instance from
class i ∈ {1, 2} in that node. Hence, the larger the feature’s
Gini importance, the more important the feature is [19]. The
top 5 features with the highest Gini importances are shown
in Table IV.

TABLE IV
TOP 5 FEATURES OF THE HIGHEST GINI IMPORTANCE

Results
Features Gini Importance

1 Length of stay 0.224773
2 CSRU 0.214003
3 BUN 0.174614
4 Age 0.052457
5 eGFR 0.047148

We observed from Table IV that length of stay, service unit
CSRU, blood urea nitrogen level, age and estimated GFR
had the highest Gini Importance. This means that most of
the decisions that were made on how to split the data were
mostly based on these features, and that the samples in the
following nodes were relatively pure. Hence, clinicians could
obtain a reasonable prediction of the risk of mortality by
looking just at this smaller subset of features.

C. Random Forest

A random forest is an ensemble of decision tree models,
and is hence less amenable to interpretation. Although there
are many methods to compute feature importance such as en-
tropy and the Gini impurity measure (as described in (4)), we
have chosen to employ Shapley values here. This technique
is versatile as it can be used to interpret outcomes from both
the RF and MLP models and can explicitly state the marginal
risk contribution of every feature. As such, we compute the
Shapley value of each feature to infer its influence. The
concept of Shapley values were first introduced in the field
of cooperative game theory, and it measures the marginal
contribution that each feature (player, in the context of game
theory) to a subset of features (coalition), averaged across
all possible subsets of features [20]. The Shapley value of
i-th feature is given as

φi(f)=
∑

S⊆{xj}pj=1\{xi}

|S|!(p−|S|−1)!
p!

(f(S ∪{xi})− f(S)).

(5)
Thus φi(f) is the contribution of the i-th feature based on f ,
which calculated the economic output of all feature values in
S, a subset of the features used in the model, p is the number
of features and xi represents the corresponding feature values
of a data point to be explained. Intuitively, a feature has a
higher Shapley value if the inclusion of this feature in the
prediction model results in a greater change in predictions,
as compared to the inclusion of other features.

For every data instance, the average marginal contribution
of each feature is given by its Shapley value. In order to find
out the influence of the feature, we can determine the SHAP
feature importance by averaging the Shapley value for every
features across all data instances [21].

Note that the Shapley value requires us to sum over all
possible subsets of features. This becomes intractable if the
number of features is moderately large. In our numerical
implementations, we approximately compute the Shapley
value by averaging over a small number of randomly sampled
subsets of features. For the RF model, we implemented
a TreeExplainer from the shap library, which the class
disregarded decision paths that involved missing features
instead of computing the output through a selection of
the features [22]. In Fig. 1 we show the SHAP feature
importance values across the top 20 features.

Fig. 1. SHAP feature importance for Random Forest

We observed from Fig. 1 that length of stay had the
largest SHAP feature importance and was responsible for
changing the predicted absolute ICU mortality risk prediction
on average by around 8% (0.08 on x-axis) regardless of
classes. As the larger the SHAP feature importance, the
bigger the average marginal contribution to risk prediction
the feature had. We could also observe that length of stay,
service unit CSRU, blood urea nitrogen level, age and service
unit MICU were the 5 most influential features. In fact, for
many instances, clinicians could accurately deduce the final
predicted risk mortality with our trained RF model with these
5 features while choosing the remaining features randomly.

D. k-Nearest Neighbors

As our implementation of k-NN uses weights trained using
the RF model, the most influential variables using k-NN are
precisely those found using these other methods. As such,
we omit discussing k-NN.
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E. Multilayer Perceptron

The MLP is a black-box model, and hence is less amenable
to interpretation. Hence, we computed Shapley values using
the KernelExplainer from the shap library to interpret the
model [23]. In order to compute the SHAP feature impor-
tance, we had to take the average of the Shapley values
of every feature across all data instances. To reduce the
computational complexity, we estimated the SHAP feature
importance from 500 training data instances randomly and
repeated the process 30 times. We plot the SHAP feature
importance values for MLP in Fig. 2.

Fig. 2. SHAP feature importance for MLP

We observed from Fig. 2 that service unit, CSRU had the
largest SHAP feature importance and was responsible for
changing the predicted absolute ICU mortality risk prediction
on average by around 8% regardless of classes. Similar to
the analysis of the RF model, clinicians could accurately
deduce the final predicted mortality risk by looking at the 5
most influential features, namely service unit CSRU, blood
urea nitrogen level, age, service unit SICU and length of stay
while choosing the remaining features randomly.

F. Comparison of Influential Features

We compare the top few most influential features extracted
from the various models, and we tabulate these in Table V.

TABLE V
TOP 5 RANKED INFLUENTIAL FEATURES ACROSS DIFFERENT MODELS

LR DT RF MLP
1 CSRU Length of stay Length of stay CSRU
2 Age CSRU CSRU BUN
3 TSICU BUN BUN Age
4 BUN Age Age SICU
5 Gender (M) eGFR Creatinine Length of stay

We observed a high degree of agreement in the most
important features across all models; in particular, we ob-
served that service unit CSRU, age, and blood urea nitrogen
levels ranked among the top 5 most influential features
across all models. These features are possible indicators for
poor renal or cardiovascular functions. Despite employing
different methods to make predictions, these models arrive
at similar predictions and a set of common variables.

V. INTERPRETING RISK PREDICTIONS

Next, we apply the influential factors obtained in Sec-
tion IV to interpret the predictions derived from our risk
calculators. We focus on 4 specific test cases, namely,
patients with icustay id #223086, #271230, #237482, and
#271203, from the test data set as the former two patients
survived past 28 days after discharge, while the latter two
patients did not survive past 28 days after discharge. These
profiles represent the spectrum of patients in the dataset and
serve to illustrate the utility as well as the limitation of our
methods.

Logistic Regression. We recall that LR predicts the mor-
tality risk of a patient based on the linear function θTx+θ0.
Hence the final prediction is primarily influenced by how far
these feature values deviate from the population sample, with
its importance weighted by the coefficients in (θ, θ0). As
such, a clinician who wishes to understand whether the LR’s
prediction is sound can examine how far the patient’s feature
values deviate from the population, with special attention on
features whose coefficients have larger magnitude.

As an illustration, we show the numerical values of each
patient corresponding to the influential features, as listed in
Table III in our fitted LR model in Table VI.

TABLE VI
RAW FEATURE VALUES OF THE 4 EXAMPLES

Features Range Test Examples
#237482 #271203 #271230 #223086

Service Unit CCU SICU MICU CSRU
Age (years) 63.2± 16.2 73.7 52.2 70.53 57.04

BUN (mg/dL) 22.4± 15.6 28 19 54 13
SOFA 4.1± 3 7 2 8 5

Heart Rate (bpm) 83.9± 13.8 108 82 82 81.5
SysBP (mmHg) 119.9± 15.9 100 132.5 138 106

Temperature (Celsius) 36.9± 0.5 36.4 37.8 37.1 36.8
Hemoglobin (g/dL) 10.5± 1.7 8.3 12 10 9.2

BMI (kg m−2) 28.1± 6.4 32.7 27.6 38.5 43.49

We observed that Patient #237482 had a high heart rate
and a low systolic blood pressure and hemoglobin level,
relative to the population. These features contributed towards
predicting a high mortality risk, and in this instance, the
patient did not survive. We observed that Patient #271230
had a relatively high BUN, SOFA score, systolic blood
pressure and BMI. The elevated BUN and SOFA score,
which have positive coefficients, outweighed the elevated
systolic pressure and BMI numbers, which have negative
coefficients. As a result, our model predicted an overall
elevated mortality risk, even though the patient did survive
past the 28 days.

Decision Tree. A DT model makes a prediction by an-
swering a sequence of queries, which checks if a particular
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feature value is above or below a learned threshold. Hence, a
clinician who wishes to understand if the learned DT model
makes decisions in a fashion that is clinically sound can
study these queries, and in particular, check if these queries
can be backed by clinical expertise. The respective branches
of all examples are shown in Table VII.

TABLE VII
DT BRANCHES OF PATIENTS #237482, #271203, #271230, #223086
Nodes #237482 #271203 #271230 #223086

1 BUN > 19 BUN ≤ 19 BUN > 19 BUN ≤ 19
2 TSICU ≤ 0.5 Length of stay ≤ 2 TSICU ≤ 0.5 Length of stay ≤ 2
3 CSRU ≤ 0.5 CSRU ≤ 0.5 CSRU ≤ 0.5 CSRU > 0.5
4 SpO2 ≤ 99.9 Age ≤ 52.6 SpO2 ≤ 99.9 -
5 Hemoglobin ≤ 11.9 Age > 43.7 Hemoglobin ≤ 11.9 -

We observed from Table VII that Patients #237482 and
#271230 undertook the same sequence of branches under
our learned model even though they had different outcomes.
One possible reason for the incorrect classification may be
that the learned DT model has limited classification power
because it only has 5 levels. Another reason may be that DT
models are inherently limited in that they on hard decision
boundaries, and cannot distinguish between features that are
near or far away from a decision boundary. In some cases,
the severity of a certain feature value may sometimes convey
clinically relevant information.

Random Forest. As we noted in Section IV-C, RF is an
ensemble method, and hence its results are less amenable to
direction interpretation compared to LR and DT. As such, we
rely on the SHAP explanation forces to interpret the predic-
tions provided by the RF model. Broadly speaking, Shapley
values can be viewed as “forces”, which either increase or
decrease the mortality risk. Each Shapley value is represented
as an arrow that pushes to increase or decrease the prediction
probability and the magnitude of the contribution is showed
by the size of the arrow. These forces would balance each
other out at the actual prediction of the data instance. The
SHAP explanation force plots for the examples #237482 and
#223086 are shown in Figs. 3, 4 respectively.

Fig. 3. SHAP explanation force plot for Patient #237482

We observed from Figs. 3 and 4 that the baseline proba-
bility, which was the average predicted probability, was 0.5.
We observe from Fig. 3 that patient #237482 had an elevated
predicted risk of 0.63. Also, the marginal risk-decreasing
contribution of being in the service unit CCU is the largest,
according to the size of the arrow. Although each of the influ-
ential risk-increasing factors such as not being in service unit,
CSRU, 3 days in the ICU and an estimated GFR of 19.28
mL/min/1.73m2 has less absolute marginal contribution than
the service unit CCU, the combined effects of these risk-
increasing factors outweighed the risk-decreasing factor and
thus, leads to an overall higher risk prediction.

We observed from Fig. 4 that patient #223086 had a low
predicted risk of 0.05. Also, the marginal risk-decreasing
contribution of being in the service unit CSRU is the largest,
according to the size of the arrow. The risk-increasing
factors had negligible marginal contribution to the overall
risk prediction, whereas risk-decreasing factors such as being
in the service unit CSRU, 1 day in the ICU, blood urea
nitrogen level of 12 mg/dL have large absolute marginal
contribution, as observed from the size of the arrows. This
leads to an exceptionally low overall mortality risk.

Fig. 4. SHAP explanation force plot for Patient #223086

k-Nearest Neighbors. The k-Nearest Neighbors model
makes prediction based on the outcomes of the nearest
neighbors. As the best estimator used 16 neighbors to make
a prediction, we showed the feature values of the patient
#237482 and the range of its 16 neighbors in Table VIII.

TABLE VIII
FEATURE VALUES OF PATIENT #237482 AND ITS 16 NEIGHBORS

Features #237482 Range of 16 neighbors’ feature values
Age 73.7 73.7± 5.67

Length of stay 3 3.96± 1.39
SOFA 7 5.79± 1.68

DiasBP 51 53.5± 3.38
HeartRate 108 99.3± 5.89

MAP 62 65.9± 3.41
SpO2 96 96.8± 0.84
SysBP 100 96.3± 6.58

Temperature 36.4 36.7± 0.18
BUN 28 37.4± 13.9

Chloride 92 94.5± 2.6
Creatinine 2.4 2.22± 0.447

Hemoglobin 8.3 9.37± 0.459
Platelet 266 223± 121

Potassium 4 4.27± 0.42
Sodium 133 134± 2

TotalCO2 31 31.1± 1.28
WBC 8.3 8.41± 1.66
BMI 32.7 29.8± 3.8
eGFR 19.3 29.8± 7.62

Gender F 14 male, 2 female
Service Unit CCU 14 CCU, 2 MICU

Label Positive 15 positive, 1 negative

We observed from Table VIII the majority of the neighbors
had a positive label, resulting in a positive prediction for test
example #237482. Also, we observed that the feature values
of the test sample were generally close to the range of its
neighbors despite a few anomalies. This was likely due to
a large range in the raw values of certain features such as
platelet count. This resulted in a large disparity even though
the standardized values were similar.

Multilayer Perceptron. Our analysis for MLP is based
on examining SHAP explanation force plots, and is similar
to our discussion regarding the RF model. The SHAP ex-
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planation force plots for the example #271203 is shown in
Figure 5.

Fig. 5. SHAP explanation force plot for Patient #271203

We observed from Fig. 5 that the base value, which was
the average predicted probability, was 0.5. We observe from
Fig. 5 that patient #271203 had a predicted risk of 0.52.
Also, the marginal risk-decreasing contribution of age, with
a raw value of 52.2 is the largest, according to the size
of the arrow. Although risk-decreasing factors such as age
and being in the service unit SICU have large marginal
contribution, these contributions are counteracted by several
less influential risk-increasing factors such as the systolic
blood pressure and total carbon dioxide level. Hence, the
MLP model may not be able to provide a definitive prediction
on this patient’s mortality risk and clinicians could consider
using other models such as DT or k-NN to estimate the
mortality risk.

VI. CONCLUSION

In this study, based on patients’ profiles extracted from
the MIMIC-III clinical database, we developed various risk
calculators to predict 28-day mortality risk of ICU patients
at discharge. We have determined the common influential
features that all calculators relied on to make predictions.
In addition, we have developed various methods to interpret
the risk predictions. On top of achieving high performance
on the test data, these calculators shared a high degree
of commonality among the set of influential features. This
showed the effectiveness of these risk calculators in clinical
settings. However, clinicians must still exercise caution due
to the possible existence of confounding variables and hidden
latent factors that may not be present in the features we used.
As this study can be helpful in providing interpretable yet
accurate predictions for clinicians, future research can be
done on exploring causal models. This has the potential to
provide clinicians with insights regarding the causal relation-
ships between these features and thus improving the patients’
health conditions by targeting the independent variables.
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