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Abstract— Tracking an individual’s food intake provides use-
ful insight into their eating habits. Technological advancements
in wearable sensors such as the automatic capture of food
images from wearable cameras have made the tracking of
food intake efficient and feasible. For accurate food intake
monitoring, an automated food detection technique is needed
to recognize foods from unstaged real-world images. This work
presents a novel food detection and segmentation pipeline
to detect the presence of food in images acquired from an
egocentric wearable camera, and subsequently segment the food
image. An ensemble of YOLOv5 detection networks is trained
to detect and localize food items among other objects present
in captured images. The model achieves an overall 80.6% mean
average precision on four objects—Food, Beverage, Screen,
and Person. Post object detection, the predicted food objects
which are sufficiently sharp were considered for segmentation.
The Normalized-Graph-Cut algorithm was used to segment the
different parts of the food resulting in an average IoU of 82%.

Clinical relevance— The automatic monitoring of food intake
using wearable devices can play a pivotal role in the treatment
and prevention of eating disorders, obesity, malnutrition and
other related issues. It can aid in understanding the pattern of
nutritional intake and make personalized adjustments to lead
a healthy life.

I. INTRODUCTION

A healthy diet is essential for an individual’s overall well
being. Excessive energy intake is one of the biggest reasons
for obesity, malnutrition, and related issues, especially among
children [1]. Monitoring of food intake and the subsequent
management of diet can play a crucial role in preventing such
issues. Food intake monitoring is generally conducted using
traditional self-monitoring as well as technology-aided meth-
ods. Self-monitoring may involve keeping a diary recording
the kinds of food being eaten and their quantity [2]. However,
such methods are prone to under-reporting and are not very
accurate [3]. Thus, there is a need for other methods that can
objectively and accurately monitor food intake.

Machine learning and deep learning methods have been
used to detect and recognize food items from images. Ka-
gaya et al. [4] used a convolutional neural network (CNN)
which was trained on a custom dataset to recognize food
in images. Pandey et al. [5] proposed FoodNet, a CNN-
based ensemble model to recognize food and evaluate it
on the Food-101 dataset [6]. A food classification and
segmentation system called MyFood was proposed by Freitas
et al. [7]. The above-mentioned methods, however, have a
major drawback of using staged datasets that contain images
captured from smartphones or other cameras. Such datasets
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require a conscious effort by a user to capture images using
a smartphone, etc. to monitor food intake. In recent times,
wearable devices have gained attention since they provide
a good alternative to monitor food intake with minimal
conscious effort [8]. Wearable devices can collect data about
food consumption during meals without any additional inter-
vention. Various kinds of wearable sensors and devices have
been proposed to monitor food intake. Acoustic methods
that detect chewing and swallowing sounds were used by
Turan and Erzin [9], who developed a food detection system
using a laryngeal microphone placed on the neck. Paßler
and et al. [10] also developed a similar food intake activity
detection scheme using an in-ear microphone. Food intake
has also been monitored using piezo-electric sensors [11],
[12], [13]. Another promising approach mentioned in [14], is
to employ wearable cameras to record eating scenes, and was
reported as an effective method to monitor food intake and
eating behavior [14], [15]. Jia et al. [16] proposed a CNN-
based method that can classify egocentric camera images that
contain food items. Hossain et al. [17] proposed a real-time
food monitoring system for egocentric camera images using
the MobileNet classifier and implemented it on the Cortex-
M7 micro-controller. However, these methods only classify
the presence of food in an image but do not localize the food.
Wearable camera images contain various background objects
and to perform an accurate dietary assessment, it is essential
to localize the food items. The localization can then help in
estimating the quantity of food and its nutritional content.

The contributions of this work are as follows: (a) The
application of the YOLOv5 algorithm to detect and localize
food items from egocentric camera images that were cap-
tured dynamically during the eating process. Unlike existing
datasets, these images are un-staged and hence represent the
real eating environment. (b) The application of the latest
data augmentation techniques to boost the performance of
the detector on real-world data. (c) Segmentation of the
detected food items using graph-cut based techniques that
involve performing a Normalized-Graph Cut on a Region
Adjacency Graph (RAG), which is constructed from the
localized food item. The end goal of this work is to aid
in the development of autonomous food intake monitoring
systems using computer vision techniques.

II. APPROACH AND METHODOLOGIES

A. Data Collection

1) Wearable Equipment: The Automatic Ingestion Mon-
itor device [18] was used to collect image data during
eating episodes.The device consists of an STM32 processor,
a camera: OV5640 along with an FPGA+1MB RAM as the
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Fig. 1: Two sample images captured from the AIM 2.0
device.

frame buffer, an ADXL362 accelerometer, and a micro SD
card to store the images. The camera is fitted with a 170-
degree wide-angle lens. Images were captured automatically
every 10 seconds [19]. The study was approved by the
University of Alabama’s Institutional Review board [18].

2) Dataset: The dataset consists of 5417 images in
total and is annotated with four different objects—Food,
Beverage, Screen, and Person. The annotations are in the
form of class labels and rectangular bounding boxes. The
dataset was split for training and testing phases according
to different and independent eating episodes (4637 training
images and 780 testing images). An eating episode refers
to a continuous activity of food intake (e.g, a meal). The
inclusion of independent datasets in the training and testing
phase prevents over-fitting of the models. Sample images
from the dataset are shown in the Figure 1.

B. Object Detection Network

The images captured from an egocentric camera include
a variety of objects that may or may not be foods be-
ing consumed. Identifying the food that is being eaten is
approached as an object detection task. Object detection
techniques help identify and locate an object of interest
in an image. Several deep learning algorithms such as R-
CNN [20], Fast-RCNN [21], Faster-RCNN [22], YOLO [23],
and SSD [24] have been successful in localizing objects in
images and videos. Among these, the YOLO algorithm was
chosen for this work. The YOLO algorithm is comparatively
faster since it uses a single convolutional network to predict
multiple bounding boxes and class probabilities [23]. This
quick inference makes it an ideal candidate for potential real-
time detection. Besides, the network is small in size, which
enables inference on edge devices. The latest version of
YOLO: YOLOv5 has shown state-of-the-art detection results,
and the implementation provided by Ultralytics was used to
develop our system [25].

Data augmentation has been shown to significantly im-
prove the performance of the YOLO algorithm [26]. Aug-
mentation also provides a strong regularization for small
datasets such as described in this work and prevent over-

fitting [27]. The augmentation techniques that were applied
to the dataset include random scaling, x-flips, and y-flips,
to incorporate variations in the pose and orientation of
the objects in the dataset. Photometric distortions such as
adjustments in hue, saturation, and brightness in images
were also part of the applied augmentations. Additionally,
mix-up [28] strategy in which objects are cropped out and
pasted in random backgrounds were also applied for building
a robust model. The new mosaic augmentation technique
which was introduced in Yolov4 [26] was also attempted.
This technique merges four training images into one. In
other words, four different image contexts were mixed, which
trained the model to detect objects out of their normal con-
text. The above-mentioned augmentations form the “Bag of
Freebies” [29] and “Bag of Specials” [26]. Transfer learning
was applied to train the network. The network was initialized
with the weights pre-trained on the COCO dataset [30]. The
SGD with momentum and warm restarts algorithm [31] was
used for optimization, and a cosine annealing scheduler [32]
was used to decay the learning rate.

A Neural network ensemble is a learning paradigm where
multiple neural networks are jointly used to solve a problem
[33]. Ensembles have shown to improve generalization and
performance [34]. Hence an ensemble of three different
networks which vary in depth —Yolov5 small (140 layers),
Yolov5 medium (188 layers) and Yolov5 large (236 layers)
[25] was utilized. The final prediction is computed as the
mean of the individual predictions of each model (in terms
of the bounding box coordinates and the confidence score).
The results of ensemble modeling and its role in improving
results are presented in Section III-A.

C. Unsupervised segmentation of food

The object detection network detects objects in terms of
class probabilities and the corresponding bounding boxes.
Since the proposed method intends to segment food, only
the detected food objects were considered for segmentation.
However, some images have serious object and camera mo-
tion blur due to being captured by a wearable camera. Hence,
an image sharpness metric proposed in [19] and validated on
images captured from the AIM 2.0 device, was incorporated
to discard blurred food objects. The sharpness metric was
computed from the mean amplitude of the highest 90 percent
frequencies extracted from the Fast Fourier Transform (FFT)
of the image. Then, a suitable threshold was configured to
discard blurred food images. The sufficiently sharp images
were considered for segmentation and processed to remove
noise using a Gaussian filter. A blur test was performed
only on the food object since images acquired by the
wearable camera are likely to have blurred objects in the
background, which are irrelevant to the context. Yet, a clear
view of the food object being eaten is necessary. Since the
ground truth dataset contained only bounding boxes and not
mask annotations, an unsupervised method for segmenting
different parts of food was required. Few popular methods
such as K-means [35][36], thresholding methods [37], edge
detection based methods, and graph-based methods [38] were
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Fig. 2: Proposed workflow diagram to detect food objects and segment their parts. The resulting segmentation IoU with
respect to the ground truth is indicated within the segment.

used in previous studies to segment different parts of the food
object. In the K-means algorithm, the pre-defined value of K
plays a major role in the segmentation outcome. Selecting the
value of K is not feasible in the proposed real-life images,
since the number of different food parts captured in the
image may vary. Graph-cut based method with normalized-
cut technique as proposed by Shi and Malik in [39], was
found to perform the best when compared with other methods
and was hence applied for food segmentation. The technique
involves setting up a weighted graph from a given set of
features and recursively partitioning the graph to obtain
segments. Before applying the graph-cut method, the K-
means algorithm was applied to obtain initial segments that
were used to construct a Region Adjacency Graph (RAG).
The RAG, G = (V,E), consists of nodes representing the
regions and edges representing the adjacency. Each node
in the RAG represents a set of pixels within the image
with the same label that was generated by the initial K-
means clustering. The weight between two adjacent regions
is a measure of the similarity of the two regions. A color
similarity measure of the form proposed by Shi and Malik
[39] was used in constructing the RAG. This is shown in
Equation 1, where d = |c1− c2|, and c1 and c2 are the mean
colors of the two regions. This method of performing N-cuts
on RAGs also reduces the time complexity.

wij = e
−d2

σ2 (1)

For the initial clustering step, a sufficiently high value
of K = 100 worked satisfactorily for all test cases, and
hence, the same was configured in this step of the proposed
workflow. Intersection Over Union (IoU), also called the
Jaccardian Index, was computed for each generated food
segment and compared with the ground truth annotation in
order to evaluate the accuracy of segmentation. The entire
workflow of the system is shown for a sample test image in
Figure 2.

III. RESULTS

A. Object Detection

The object detection result of the proposed ensemble
model on the test set, for each object class, is shown in
Table I. The detection results of the individual models that

(a) (b)

(c) (d)

Fig. 3: Food detection results on four sample images taken
from the test dataset, with prediction confidence scores
specified alongside the predicted class labels in each image.

comprise the ensemble are also shown. The mean average
precision (map) metric was used to evaluate the performance
of each model. It was found that the performance improved
when deeper networks were used, and the best results were
obtained by ensembling the three individual models. The
results of each model were aggregated by computing the
mean of the predictions of each model in terms of the confi-
dence scores and bounding box coordinates. When using an
ensemble, objects that were undetected by one model were
detected by another, thereby improving the detection map.
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Example results are shown in Figure 3.
In Figure 3a, the food object has been successfully de-

tected in the presence of camera motion blur from the
wearable device. Figures 3b, 3c and 3d show the detection on
food objects in different conditions. The model also detects
food that is held in the hands (Figure 3d). Thus, the model is
robust and resilient to variations in food orientation, shape,
size, and color.

Class mean average precision (map)
Yolov5s Yolov5m Yolov5l Ensemble

Food 0.6 0.624 0.615 0.666
Beverage 0.651 0.737 0.732 0.766

Screen 0.871 0.9 0.882 0.917
Person 0.847 0.839 0.878 0.876

All 0.742 0.772 0.784 0.806

TABLE I: Object detection results

B. Food Segmentation

The segmentation result for a test image is shown in Figure
2. The detected food object was cropped and tested for
blurness. The normalized graph cut method was applied if
the image is sharp as described in Section II-C, to segment
the parts of food successfully. The results of testing on an
image captured while eating pizza is shown in Figure 4. The
larger piece and the smaller piece are segmented at 0.849
and 0.589 IoU respectively. Another test case involving a
bowl of soup is presented in Figure 5. The food parts are
segmented at 0.9 and 0.6 IoU.

Experiments revealed that the segmentation technique per-
forms reliably for solid food and soup type of items. The
averaged results of segmentation on 20 such segments of
food is shown in Table II. A segment of food is one part
that is present in a food object. For example, in the test
case in Figure 2 there are two segments of food, which have
been segmented at 0.916 and 0.914 IoU respectively. The
20 test segments are present in 11 unique images picked
randomly from 5 different eating episodes. The mean IoU
of the predicted segments is 0.81 with respect to the ground
truth, and the standard deviation of the IoUs is 0.1. The
segmentation is hence fairly robust and accurate.

TABLE II: Averaged results of segmentation

Number of food segments Mean IoU Standard Deviation of IoU
20 0.82 0.1

IV. CONCLUSIONS

A robust food detection model and segmentation pipeline
were developed for the first time with an intention to monitor
food intake from egocentric wearable cameras. An ensemble
of Yolov5 networks of varying depth was found accurate
for the custom dataset collected from the AIM 2.0 wearable
device. The proposed workflow caters to blurred and un-
staged images and is applicable in real-life scenarios. A
normalized-Graph Cut method, post the blurriness test on the

(a) Food Object (b) Ground Truth Annotation

(c) N-Cut segmentation (d) Result IoUs

Fig. 4: Segmentation results for two pieces of pizza on
a plate. The IoUs for each piece of food is shown
within/alongside the segment.

(a) Food object (b) Ground Truth Annotation

(c) N-Cut segmentation (d) Result IoUs

Fig. 5: Segmentation results for a bowl of soup. The IoUs
for each piece of food is shown within the segment.

detected food object, was designed in the proposed workflow
to segment different parts of the food accurately. The novel
implemented workflow is a significant step towards building
food monitoring systems that are completely autonomous,
and available at a relatively low cost. In the future, further
steps on extending the dataset to include different kinds of
food need to be explored. The segmentation method will
also be extended to other food types. The extension of
various food data in the custom datasets would enable precise
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estimation of the nutritional content of the food and thereby
aid in not only automated monitoring of food intake but also
the consumed nutritional index.
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