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Abstract — Electrocardiogram (ECG)-based identification 

systems have been widely studied in the literature. Usually, an 

ECG trace needs to be segmented according to the detected R 

peaks to enable feature extraction from the ECGs of duration 

equal to nearly one cardiac cycle. Beat averaging should also be 

applied to reduce the influence of inter-beat variation on the 

extracted features and identification accuracy. Either detecting 

R peaks or collecting extra heartbeats for averaging will 

inevitably lead to a delay in the identification process. This 

paper proposes a deep learning-based ECG biometric 

identification scheme that allows identity recognition using a 

random ECG segment without needing R-peak detection and 

beat averaging. Moreover, the problem of being vulnerable to 

unregistered subjects in an identification system is also 

addressed. Experimental results demonstrated that an 

identification rate of 99.1% for an identification system having 

235 enrollees with an equal error rate of 8.08% was achieved.  

I. INTRODUCTION 

With the growing popularity of Internet of Things (IoT) 
devices and their accompanying services in improving an 
individual’s quality of life, designing an effective identity 
management solution becomes essential to prevent the rising 
risks of data security and privacy breaches [1]. This task can 
be realized based on cryptographic methods that require 
individuals to remember items such as passwords to prove 
their identities. Biometric technologies that directly utilize 
individuals’ physiological or behavioral attributes for identity 
recognition can be another category of methods. Compared to 
passwords, biometric attributes are always with individuals, 
enabling secure access to IoT devices without needing to 
remember anything. Example biometrics currently in use 
include fingerprints, faces, and irises. However, these 
extrinsic biometric attributes are susceptible to falsification 
and replay attacks. A contact lens can spoof an iris recognition 
system with a photographed iris image printed on it [2], [3]. A 
fake finger with the fingerprint ridges of an individual 
imprinted on the surface can be fabricated using materials 
such as glue and gelatin [4]. Therefore, the search for new 
biometric attributes never stops, and electrocardiograms 
(ECGs), the recordings of the heart’s electrical activity, have 
been gaining interest [5–10].  

Similar to identification based on other attributes, for ECG 
data to be applicable in an identification task, a feature 
extraction step is required for the subsequent identification 
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process to be effective. Several feature extraction methods 
have been proposed in the literature, including fiducial 
feature-based [11], principal component analysis (PCA)-based 
[12], and wavelet transform-based [13] approaches. The 
common characteristic of these methods is that their features 
are extracted from the ECGs of duration equal to 
approximately one cardiac cycle. Consequently, an ECG trace 
needs to be segmented according to the detected R peaks 
before feature extraction, with the R peaks being detected by, 
for example, the Pan–Tompkins algorithm [14]. In addition, to 
reduce the influence of inter-beat variation on the extracted 
features and thus the ultimate identification accuracy, beat 
averaging is applied [15]. Either detecting R peaks or 
collecting extra heartbeats for averaging will delay the 
identification process. Finally, once the features are obtained, 
they are used to form biometric templates that are stored in the 
database or presented to the system for identity recognition 
with a selected classifier. 

This paper presents a convolutional neural network 
(CNN)-based scheme for ECG biometric identification. 
Although applying CNNs to ECG biometric identification can 
also be found [16], we consider a scheme that requires no 
R-peak detection and beat averaging. A CNN is comprised of 
alternating layers of three types [17]: convolution, pooling, 
and fully connected layers having impressive prediction 
results in computer vision [18], [19]. With the several kernels 
in the convolution layers of the proposed CNN, the 
discriminant features of different characteristics from the 
input ECGs can be extracted for identification. The 
noise-resistant property of kernels allows us to determine a 
subject’s identity using one single heartbeat without beat 
averaging to mitigate inter-beat variations [20]. Moreover, the 
“translation invariance” property of a pooling layer makes the 
down-sampled feature maps less sensitive to the content shifts 
in the ECG segments such that no R peak detection is required 
to align heartbeats before feature extraction. Finally, the 
method for excluding a subject that is not registered in the 
system is also considered to work with the proposed 
identification scheme. 

II. PROPOSED ECG BIOMETRIC IDENTIFICATION SCHEME 

A. Data Preprocessing 

Baseline wander and power-line interference are common 
artifacts that accompany the acquired ECGs. To extract the 
wander signal to be subtracted from the acquired ECGs for 
baseline wander removal, two median filters with window 
sizes of 200 ms and 600 ms are applied. To suppress 
power-line interference, a second-order IIR notch filter 
centered at the power line frequency is utilized. Then, we cut 
the artifact-free ECGs into the segments of a fixed 
duration Td. Depending on the sampling rate fs, the size of the 
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data vector to be fed into the proposed network model is Td fs 
× 1. Notably, these segments were obtained randomly without 
referencing the detected R peaks, as required in most studies. 

B. Network Architecture 

The proposed network model for identity determination is 
depicted in the identification stage of Figure 1. This model is 
intended to operate in identification mode, that is, an unknown 
subject’s identity is determined without an identity claim. The 
proposed model’s architecture comprises five convolution, 
three max-pooling, and three fully connected layers. Each of 
the first two convolution layers is followed by a max-pooling 
layer. The third, fourth, and fifth convolution layers are 
connected in series without any intervening layer. The fifth 
convolution layer is followed by the last max-pooling layer, 
whose output is applied to three successive fully connected 
layers. The number of filters in the five convolutional layers is 
96, 256, 384, 384, and 256. The filter size for the last three 
convolution layers and the three max-pooling layers is 3 × 1, 
and those for the first and second convolution layers are 11 × 1 
and 5 × 1, respectively. All filters in the convolution and 
pooling layers are applied with a stride of one. The number of 
neurons in the first two fully connected layers is 512, and that 
of the last fully connected layer is the same as the number of 
subjects to identify (i.e., the number of enrollees). The 
rectified linear unit nonlinearity is applied after every 
convolution and the first two fully connected layers. Owing to 
the need for multi-label classification (i.e., identity 
identification), the “softmax” activation function is chosen for 
the last fully connected layer. The entire network was trained 
by iterating the cost function of cross-entropy between the 
actual class labels and the predicted probabilities from the 
softmax layer in the following experiments. A gradient 
descent optimizer was used during training. The learning rate 
was 10-4, the batch size was 50, and the epoch was 100.  

C. Exclusion of Unregistered Subjects 

A deficiency associated with identity recognition using the 

proposed network model and shared by the existing methods 

is that irrespective of whether a subject is registered or not, 

he/she will be forced to link to one of the enrollees when 

trying to access the system. The security of the biometric 

system is thus threatened, and being able to exclude an 

unregistered subject is essential for the proposed scheme to be 

applicable in practice. To achieve this latter task, the identity 

given by the previous network model is only treated as a 

plausible one whose genuineness needs to be further verified. 

Recall that the output vector of the last fully connected 

layer with the softmax activation function in the proposed 

model will generate a probability distribution comprising ns 

probabilities for a given ECG segment, where ns represents 

the number of enrollees. Because each enrollee of the system 

provides nt ECG segments for model training, an enrollee will 

have nt such probability vectors. Then, we average these 

probability vectors to obtain his/her own feature vector, 

which will be stored in the system to represent him/her. Later, 

when an unknown ECG segment is presented to the 

identification system and a plausible identity is issued, the 

user-specific feature vector of that plausible enrollee will be 

retrieved from the system to evaluate for the “similarity” with 

the just generated probability vector of the unknown segment.  

 

Fig. 1. Algorithm flowchart for the proposed scheme for unknown 
subject identification and unregistered subject exclusion. 

 

The unknown segment is regarded as belonging to the 

plausible enrollee if the similarity lies in a preset fence region. 

To calculate the similarity, the Kullback–Leibler (KL) 

divergence is used [21]: 
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𝐷𝐾𝐿(p ‖ q) = ∑ p
𝑖
 log(

p𝑖

q𝑖

)
𝑛𝑠
𝑖=1  ,                     (1) 

where p and q denote two probability vectors, with pi and qi 

being their i-th elements. To determine the required fence 

region, the interquartile range (IQR)-based method can be 

used. Notably, for any enrollee, there are still nv ECG 

segments for network model validation, whose probability 

vectors can be used to calculate the KL divergences with 

respect to the user-specific feature vector of that enrollee. 

These nv values are not the same because of the inter-beat 

variation and random beat segmentation. IQR is the 

difference between the first quartile Q1 and the third quartile 

Q3, which are defined as the values in the nv KL divergences 

holding 25% and 75% of the data below them, respectively 

[22]. The fence region is then defined to be from Q1 ˗ kiqr × 

IQR to Q3 + kiqr × IQR, where kiqr denotes the control 

parameter for the region size. However, because it is 

unnecessary to consider a subject whose KL divergence is 

lower than the fence region to be unregistered, we only need 

to check if the calculated KL divergence is above the higher 

value Q3 + kiqr × IQR. Later, if an unknown ECG segment is 

presented to the identification system and a plausible identity 

is issued, we will check if the obtained KL divergence is 

lower than its corresponding Q3 + kiqr × IQR. If so, the subject 

is deemed to be a plausible enrollee; otherwise, he/she is 

excluded as an unregistered one.  

III. RESULTS AND DISCUSSION  

A. Dataset 

The proposed scheme’s performance was evaluated using 
the Lead-I recordings of 285 subjects from the Pysikalisch- 
Technische Bundesanstalt (PTB) database [23]. Each ECG 
record was sampled at 1 kHz with a 12-bit resolution. Before 
proceeding, each ECG record was subjected to baseline 
wander removal and 50 Hz power-line interference 
suppression, as discussed in Section II.A. Among these 285 
subjects, we randomly selected 235 subjects as the enrollees 
to implement the CNN-based identification system, and the 
remaining 50 subjects were used as potential imposters to 
examine the proposed scheme for unregistered subject 
exclusion. 

B. Results and Discussion 

In the first example, we studied the influence of the 
sampling rate and the duration of an ECG segment on 
identification accuracy. ECG recordings of different 
sampling rates were obtained by downsampling the original 
recordings, whose duration varied from 1 to 3 s for them to 
cover at least one complete heartbeat waveform. A total of 
70,500 ECG data segments were used, of which 47,000, 
11,750, and 11,750 were used for training, validation, and 
testing, respectively. The proposed model was trained on 
TensorFlow 1.0 with the CUDA 9.0 toolkit and cuDNN 
v7.3.1 on the computing platform with Intel core I7-9700F 
CPU, GeForce GTX 2070, and 32 GB RAM. For comparison, 
we also implemented the fiducial-based approach using 21 
morphological attributes [11] and the PCA-based approach 
[12], whose implementation details can be observed in [15]. 
During identification, only one heartbeat/segment per subject 
was used in each trial, and the proportion of correctly 

identified subjects, i.e., the identification rate (IR), was 
adopted as the performance measure. 

As shown in Figure 2, as fs decreases, the IRs of the fiducial 
and PCA-based approaches decrease, whereas that of the 
proposed CNN-based method increases. This demonstrated 
that although the morphological details of heartbeats were 
eliminated after a reduction in fs, discriminant information 
could be extracted to enable valid identification through 
CNN’s superior feature extraction capability. Furthermore, the 
IR of the proposed method increased as Td increased when fs 
was sufficiently small. Note that as fs or Td increases, the size 
of the input data vector increases. This large input size 
increases the number of parameters of the CNN-based model. 
For example, when Td = 2 s, the number of parameters is 
32,212,075, 64,980,075, 130,516,075, and 261,588,075 when 
fs = 125, 250, 500, and 1,000 Hz, respectively. Because the 
data segments available for model training were limited, a 
network model with satisfactory IR might not be obtainable, 
especially for a large model. Lastly, an IR of 99.1% was 
obtained when fs = 125 Hz and Td = 2 s.  

In the next experiment, the efficacy of the proposed scheme 
for unregistered subject exclusion was evaluated. Two types 
of errors were considered. A false acceptance occurred if an 
unregistered subject (or an impostor) was identified as 
belonging to the database. A false rejection occurred when a 
registered subject was not identified. The false-positive 
identification-error rate (FPIR) and false-negative 
identification-error rate (FNIR) were the metrics used to 
quantify these two errors. To evaluate the FPIR, the remaining 
50 subjects of the PTB dataset served as imposters, and each 
impostor presented 50 ECG segments of 2 s duration to spoof 
the system. Further, each of the 235 enrollees presented 50 
ECG segments different from those used for training and 
validation to determine the correct identification rate. 
Afterward, the FNIR was calculated as the ratio of the number 
 

 

Fig. 2. IRs of various algorithms under different sampling rates. 
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Fig. 3. FPIRs and FNIRs of the proposed scheme under different kiqr.  
 

of incorrect rejections to the number of total access attempts. 
We repeated the evaluation ten times. The mean FPIRs and 
FNIRs and their standard deviations under 
different kiqr values are depicted in Figure 3. The lowest equal 
error rate achieved by the proposed scheme was 8.08% 
when kiqr = 2.16. As observed, the value of FNIR was more 
than 8% when kiqr < 2. This demonstrated that the data 
variation owing to random segmentation was severe, and 
incorporating a small fence region increased the likelihood of 
falsely rejecting a genuine subject. Although the FNIR can be 
reduced by enlarging the fence region, it will instead boost the 
FPIR, and other sophisticated approaches to mitigate either 
the FNIR or FPIR should be resorted to. 

IV. CONCLUSIONS 

This paper has presented a biometric scheme that allows 

identity recognition using a random ECG segment. Initially, 

an ECG segment from an unknown subject is presented to the 

proposed DL-based identification system to determine a 

plausible identity. The generated probability vector is then 

sent to calculate the KL divergence with respect to that 

plausible enrollee’s user-specific feature vector to check 

whether the unknown subject is deemed to be the plausible 

enrollee with the proposed IQR-based unregistered subject 

exclusion scheme. The performance of the proposed scheme 

was evaluated using ECGs from the PTB database. Compared 

to the two existing approaches, our proposed scheme 

achieved relatively high recognition rates of more than 99% 

for an identification system with 235 enrollees. Although 

incorporating the exclusion scheme lowered the IR because a 

genuine access attempt might falsely be rejected, access 

attempts of impostors to the system could be stopped. 

Because the resulting equal error rate was still as high as 

8.08%, we will focus our future studies on proposing a way to 

address this issue. 
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