
  

  

Abstract— Multiple additive regression trees (MART) have 

been widely used in the literature for various classification tasks. 

However, the overfitting effects of MART across heterogeneous 

and highly imbalanced big data structures within distributed 

environments has not yet been investigated. In this work, we 

utilize distributed MART with hybrid loss to resolve overfitting 

effects during the training of disease classification models in a 

case study with 10 heterogeneous and distributed clinical 

datasets. Lexical and semantic analysis methods were utilized to 

match heterogeneous terminologies with 80% overlap. Data 

augmentation was used to resolve class imbalance yielding 

virtual data with goodness of fit 0.01 and correlation difference 

0.02. Our results highlight the favorable performance of the 

proposed distributed MART on the augmented data with an 

average increase by 7.3% in the accuracy, 6.8% in sensitivity, 

10.4% in specificity, for a specific loss function topology. 

 
Keywords: distributed environments, data augmentation, lexical 

analysis, multiple additive regression trees, hybrid loss. 

I. INTRODUCTION 

Nowadays, big data in healthcare can provide broader and 

more comprehensive insight on the clinical decision-making 

process, as well as, enhance the statistical power of the 

clinical research studies [1-3]. The most common strategy for 

knowledge distillation across complex big data structures is 

based on the integrative analysis of data from multiple clinical 

registries which are shared and stored in centralized databases 

[4]. This, however, is not always feasible either due to GDPR 

(General Data Protection Regulation) violations or due to 

computational burdens which arise during the analysis of big 

data [5]. A solution to this is to use distributed environments 

[6, 7], where the data are stored in distributed nodes. 

A technical challenge in distributed environments is to train 

machine learning algorithms across clinical data which are 

distributed across multiple computing nodes [8]. Towards this 

direction, batch processing methods, such as, online learning 

and meta-learning [9, 10] have been proposed, where the 

former [9] uses stochastic optimization to update an existing 

estimator on upcoming training instances whereas the latter 

[10] focuses on the aggregation of outcomes from models 

which are trained on each distributed node. Meta-learning 
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methods, however, limit the “horizon” of the training process 

since the individual models are trained on individual subsets 

[2] and are restricted to the additive update of the weights of 

the model on new “online” training instances. A solution to 

this is to use incremental learning [11-13] which trains a 

classifier on an initial dataset, and then incrementally adjusts 

its weights on a series of existing datasets. Towards this 

direction, several incremental learning algorithms have been 

proposed in [13] including the multiple additive regression 

trees (MART), the Support Vector Machines (SVM), and the 

Multinomial Naïve Bayes (MNB), among others, where the 

gradient boosting trees (a specific type of MART) have the 

best performance in many classification tasks [12, 13]. 

A common problem with multiple additive regression trees, 

however, is the fact that trees added early in the ensemble tend 

to have a higher impact during the decision-making process 

than the trees added later [14]. Dropouts have been recently 

adopted by the deep learning community [14] to deal with this 

issue by scaling the most prominent trees in the ensemble with 

a specific rate of rejected trees. However, a main problem in 

MART with dropout rates is to account for overfitting effects 

in the selection of the dropout rate which is arbitrary. 

Although the MART (with and without dropouts) have been 

widely used in the literature as robust classifiers for different 

disease classification tasks [13-15] none of these algorithms 

have investigated the overfitting effects of MART during the 

training across heterogeneous and highly imbalanced big data 

structures in distributed environments. 

To deal with this issue, we propose a pipeline which utilizes 

distributed multiple additive regression trees (MART) with 

hybrid loss for training across 15 distributed and harmonized 

datasets of patients with autoimmune diseases. Data pre-

processing routines were utilized for data quality control. 

Flexible and stringent data harmonization methods were 

developed to detect overlapping terminologies across the 

heterogeneous data. Density forest ensembles were used for 

data augmentation to yield high-quality virtual data. Our 

results highlight the performance of the proposed pipeline on 

the augmented data yielding an average increase by 6.8% in 

sensitivity, and 10.4% in specificity, for a specific loss 

function topology, compared to training only on the real data. 
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II. MATERIALS AND METHODS 

A. Distributed data analytics pipeline 

The pipeline that was developed in this study consists of 

three layers, namely the: (i) data-preprocessing layer, (ii) the 

data harmonization layer, and (iii) the distributed data 

analytics layer. The first layer focuses on data quality analysis 

through the elimination of data recording errors, such as, 

features with joint variability. The data harmonization layer 

resolves structural heterogeneities across distributed datasets 

through flexible and stringent lexical analysis. The final layer 

utilizes advanced ML algorithms for additive training across 

augmented datasets in distributed environments, where the 

integrative analysis is restricted either due to GDPR or due to 

the increased need of computational resources for analysis. 

 
Figure 1. An illustration of the distributed analysis pipeline. 

B. Data pre-processing 

A data curation workflow presented in a previous study 

[16] was enhanced to support big data structures. Robust 

methods for anomaly detection were developed, including the 

elliptic gaussian curves [2] and the isolation forests [2], where 

the former detects anomalies by fitting multivariate Gaussian 

distributions and the latter trains tree ensembles to isolate 

outliers. The covariance and the Spearman correlation [2] 

were used to detect features with joint variability in the data. 

C. Data harmonization 

An automated harmonization workflow was utilized on top 

of a knowledge base repository which communicates with the 

OHDSI Athena vocabulary [17]. Two types of lexical analysis 

algorithms were developed, the “stringent” which detects 

lexical matches with high coherence and the “flexible” which 

proposes more matches with less coherence. Both algorithms 

solve the edit distance problem [2] using the Hamming and 

the Levenshtein distances [2] to detect terminologies with 

common string sequences. Optional semantic information 

was extracted from semantic data models that describe a 

domain knowledge using entities and object properties [18]. 

D. Machine learning in distributed environments 

1) Strategy 

Distributed learning lies on the additive adjustment of a 

single estimator across multiple data structures [8]. To 

achieve this we update the weights of the estimator through 

the stochastic gradient descent (SGD) method which seeks for 

a linear loss function, ℎ(𝑓(𝑥𝑖), 𝑦𝑖), which minimizes [11-13]: 

𝐿(𝒘) = 𝑎𝑟𝑔𝑚𝑖𝑛 (
1

𝑁
∑ ℎ(𝑓(𝑥𝑖), 𝑦𝑖) + 𝑎𝑟(𝒘)

𝑁

𝑖=1

), () 

where, 𝑥𝑖 is the 𝑖-th instance, 𝑦𝑖 is the target, 𝒘 is a weight 

vector, ℎ(. ) is a loss function, a is a hyperparameter, 𝑟(𝒘) is 

a regularizer, 𝐿(. ) is the objective, and 𝑓(𝑥𝑖) is a linear score 

function. Solving (1) yields the weight update formula: 

𝑤𝑖 = 𝑤𝑖−1 − 𝜂𝑡(∇𝑤ℎ(𝑓(𝑥𝑖), 𝑦𝑖) + 𝑎∇𝑤𝑟(𝑤)), () 

where, 𝑖 is the stage, 𝑤𝑖−1 is the weight estimation at stage 

𝑖 − 1, 𝜂𝑡 is a non-negative learning rate parameter, and  

∇𝑤ℎ(𝑓(𝒙𝒊), 𝒚𝒊) is the gradient of the loss function ℎ(. ). 

2) Distributed multiple additive regression trees (MART) 

In the case of boosting ensembles (or multiple additive 

regression trees – MART), we seek for an estimator of week 

regression tree learners, at a training stage, 𝑖, as in [2, 11-13]: 

𝐹𝑖(𝒙) = 𝐹𝑖−1(𝒙) − 𝛾𝑖 ∑ ∇𝐹𝑖−1
𝜑(𝑦𝑗 , 𝐹𝑖−1(𝑥𝑗)

𝑛

𝑗=1

, () 

where the regularization term in (3) is defined as in: 

𝐸(𝑡) ≈ ∑ [𝜑(𝑦𝑖 , 𝑦̃𝑖,𝑡−1) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)]

𝑁

𝑖=1

, () 

with 𝑔𝑖 denoting the first order gradient and ℎ𝑖 the second 

order gradient of the loss function. An underlying problem in 

MART is the fact that trees which are added early in the 

ensemble tend to have a higher impact in decision making 

than those added after [14]. A solution is to use a dropout rate 

[14], where the dropped trees on each stage are combined with 

the remaining trees through a scaling factor [14]. 

3) Distributed MART with hybrid loss 

A main problem in distributed MART with dropout rates is 

to account for overfitting effects in the selection of the 

dropout rate, say 𝑟, we propose a hybrid loss function which 

combines the logcosh loss [19], say 𝑓, with the Huber loss, 

say 𝑔 [20], where the loss topology is controlled by a 𝛿 value. 

An exponential function was defined between 𝑟 and 𝛿 so that 

the shape of the loss function is steeper around 0 to avoid 

overfitting for large 𝑟. The first and second order gradients of 

𝑓 and 𝑔 were used in (4), where the former are defined as in: 

𝛻𝑓 = 𝑡𝑎𝑛ℎ(𝑥) , 𝛻𝑔 = 𝑑/√𝑠,  () 

and the second order gradients are defined as in: 

𝛻2𝑓 =  1/𝑐𝑜𝑠ℎ2 (𝑥), 𝛻2𝑔 = √𝑠/𝑠,  () 

where 𝑑 and 𝑠 are approximation factors [22]. Eqs (5), (6) are 

combined based on the product rule and utilized in Eq (4). 

A pseudocode that summarizes the backbone of distributed 

learning is presented in Algorithm 1. An ML algorithm is 

trained on the first dataset yielding the initial weights which 

are additively updated across the rest of the datasets through 

(2) based on the weights from the previous executions. 
Algorithm 1. A pseudocode for distributed learning. 

1 def distributed_learning(F, 𝑻 = {𝑻𝟎, 𝑻𝟏, 𝑻𝟐 … , 𝑻𝑴}, 𝒘𝟎): 

2 fit an estimator 𝑭𝒐 on the dataset 𝑻𝒐 yielding 𝒘𝟎 

3 for 𝑖 = 0: 𝑀 do: 

4 retrieve weight vector 𝑤𝑖−1 from the previous execution 

5 solve 𝑤𝑖 = 𝑤𝑖−1 − 𝜂𝑡(∇𝑤ℎ(𝑓(𝑥𝑖), 𝑦𝑖) + 𝑎∇𝑤𝑟(𝑤)) 

6 update 𝐹𝑖(𝒙) = 𝐹𝑖−1(𝒙) − 𝛾𝑖 ∑ ∇𝐹𝑖−1
𝜑(𝑦𝑗 , 𝐹𝑖−1(𝑥𝑗)𝑛

𝑗=1  

7 return [𝑤𝑖 , 𝐹𝑖] 
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4) Data augmentation using density forest ensembles 

Density forest ensembles were used as high-quality virtual 

data generators [21] instead of the conventional probabilistic 

methods which are restricted to oversampling with biased 

assumptions. Density trees are built in a top-down way, where 

the splitting process is based on the variance of each feature. 

A density forest is as a mixture of Gaussian densities [22]: 

𝑝(𝑣) =
1

𝛭
∑ 𝑝𝑘(𝑣)

𝛭

𝑘=1

=
1

𝛭
∑ 𝑔𝑞(𝑣)𝑁 (𝑣; 𝜇𝑞(𝑣), 𝛴𝑞(𝑣))

𝑘,𝑞

, () 

where 𝑣 ∈ 𝑉 is a tree node, 𝑁(𝑣; 𝜇𝑞(𝑣), 𝛴𝑞(𝑣)) is a 

multivariate Gaussian distribution with mean 𝜇𝑞(𝑣) equal to 

the mean of all points reaching the leaf 𝑞 ∈ 𝑄, 𝛴𝑞(𝑣) is the 

covariance and 𝑔𝑞(𝑣) is the proportion of all points reaching 

𝑞. Statistical measures, such as, the goodness of fit (gof), the 

Kullback-Leibler (KL) divergence and correlation [21] were 

used to quantify the similarity among the real and virtual data. 

III. RESULTS 

A. Data quality 

Anonymized clinical data were collected from 10 databases 

with patients who have been diagnosed with primary 

Sjögren’s Syndrome (pSS) under the HarmonicSS Project 

[23]. The 10 databases included 316 lymphoma patients 

(targets) and 4692 non-lymphoma patients (controls). 

According to the data quality diagnostics (Fig. 2), a large 

portion of anomalies was detected in demographic- and 

laboratory-related measures, on each dataset, which were 

marked with orange color and removed from the analysis. 
 

 
Figure 2. An instance of a selected dataset with quality diagnostics. 
 

All features were ranked based on their quality. Instances 

with green color have adequate quality whereas those with red 

color have poor quality and fields with black color denote 

missing values (Fig. 2). A small portion (5%) of features with 

joint variability was identified between biopsy-related 

features. The flexible data harmonization approach yielded 41 

features with more than 80% overlap across the 10 datasets. 

B. Data augmentation 

The density forest ensembles were applied on each dataset 

to augment the real population yielding 10,016 high-quality 

virtual patients (586 targets, 9430 controls), in total, with 

average gof 0.01, KL divergence less than 0.001, and 

correlation difference 0.02. The distributed learning pipeline 

was then utilized, using the hybrid loss function (Fig. 3), 

where the steepness of the logcosh and the wideness of the 

modified Huber loss were combined for different values. The 

value was defined as in the proposed distributed MART with 

dropouts, where 𝑟 is the dropout rate. 

 
Figure 3. Distribution of the hybrid loss function compared to the modified 

Huber loss and the logcosh for different 𝛿 values. 

In the real case, the 9 datasets having the highest number 

of targets were used for distributed training (300 targets and 

4,411 controls, in total), whereas in the data augmentation 

case, the 9 training datasets included 9,422 patients (546 

targets, 8,876 controls), in total. In both cases, the remaining 

(real) dataset was used for testing (16 targets, 281 controls). 

Random down-sampling with replacement was also applied 

on each case for class imbalance handling. 

The overall performance of the distributed algorithms was 

better on the augmented data, where the distributed MART 

achieved accuracy 0.852, sensitivity 0.833 and specificity 

0.854 against the one trained on the real data with accuracy 

0.808, sensitivity 0.722 and specificity 0.818. A notable 

increase was observed in the case of the proposed distributed 

MART with 𝛿 = 0.4 (𝑟 = 0.3) which achieved accuracy 0.865, 

sensitivity 0.84, and specificity 0.868 whereas in the real case 

the algorithm achieved accuracy 0.791, sensitivity 0.772, and 

specificity 0.794. A similar increase occurs for 𝛿 = 0.6 (𝑟 = 

0.4) with accuracy 0.862, sensitivity 0.868, and specificity 

0.861 against the real case where the algorithm achieved 

accuracy 0.835, sensitivity 0.854, and specificity 0.833. 

According to Fig. 4, the area under the curve scores in the 

distributed MART yielded an average increase by 5.2%, as 

well as, by 1.4% in the proposed distributed MART with 𝛿 = 

0.4 and 2.1% with 𝛿 = 0.6. 
 

 
Figure 4. Receiver Operating Characteristic (ROC) curves for distributed 

classification with and without augmentation. 
 

The positive impact of data augmentation is also reflected 

by the detection error tradeoff (DET) curves which are 
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depicted in Fig. 5 in logarithmic scale. The DET score was 

defined as the median absolute ratio of the false positive rate 

over the false negative rate. According to Fig. 5, an average 

decrease by 2.6% in the DET score is observed in the 

proposed distributed MART with δ = 0.4 (𝑟 = 0.3) and 4.5% 

with δ = 0.6 (𝑟 = 0.4). 

 
Figure 5. Detection error tradeoff (DET) curves for distributed classification 

with and without augmentation. 

IV. CONCLUSIONS 

In this work, we presented a pipeline for additive training 

across augmented and harmonized clinical data in distributed 

environments through the utilization of distributed multiple 

additive regression trees (MART) with a hybrid loss. The 

pipeline includes data pre-processing routines for the precise 

detection of data anomalies, as well as, features with joint 

variability. Both flexible and stringent lexical analysis were 

applied to detect terminologies with increased coherence 

among the distributed data. Density forest ensembles were 

finally developed for the generation of high-quality virtual 

distributions which were used for data augmentation. 

The density forest ensembles were able to generate virtual 

data for data augmentation with decreased divergence with 

the real data (average gof 0.01, KL divergence less than 0.001, 

and correlation difference 0.02). The proposed pipeline was 

able to yield robust distributed learning models from the 

augmented data with an average increase by 6.8% in 

sensitivity, and 10.4% in specificity for 𝛿 = 0.4. The proposed 

loss function avoids overfitting effects which are caused by 

the early inclusion of regression trees in the ensemble. To our 

knowledge, this is the first case study which combines data 

augmentation and distributed regression tree ensembles with 

hybrid loss yielding robust disease classification models 

through a case study in autoimmune diseases. 

Although the proposed classifiers do not exist in distributed 

libraries like Apache Spark’s MLlib [24] we plan to conduct 

a comparison study in the future. Moreover, we plan to extend 

the explainability of the classifiers by measuring the impact 

of each ensemble in the decision-making process and explore 

new utilities to avoid biases during the training stage. 
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