
  

  

Abstract— Nowadays, there is a growing need for the 

development of computationally efficient virtual population 

generators for large-scale in-silico clinical trials. In this work, we 

utilize the Gaussian Mixture Models (GMM) with variational 

Bayesian inference (BGMM) using robust estimations of 

Dirichlet concentration priors for the generation of virtual 

populations. The estimations were based on an exponential 

transformation of the number of Gaussian components. The 

proposed method was compared against state-of-the-art virtual 

data generators, such as, the Bayesian networks, the supervised 

tree ensembles (STE), the unsupervised tree ensembles (UTE), 

and the artificial neural networks (ANN) towards the generation 

of 20000 virtual patients with hypertrophic cardiomyopathy 

(HCM). Our results suggest that the proposed BGMM can yield 

virtual distributions with small inter- and intra-correlation 

difference (0.013 and 0.012), in lower execution time (4.321 sec) 

than STE which achieved the second-best performance. 
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I. INTRODUCTION 

In the recent years, there is an emerging need for virtual 

population generation in in-silico clinical trials (ISCTs), 

where the financial burden of expensive drug testing and 

development is large [1-4]. Virtual population generation is a 

computational approach which can provide insight into the 

pathogenic mechanisms of different diseases, such as, the 

cardiovascular diseases (CVDs) through the augmentation of 

real patient data with high-quality virtual patient data that 

“mimic” the real ones. So far, virtual population generation 

has multiple applications in ISCTs specifically in drug testing 

and development [1, 3], as well as, in pharmacokinetics [2, 4]. 

Probabilistic approaches are the most common methods for 

virtual population generation [5, 6], where the synthetic 

samples are randomly drawn from the real distributions. A 

widely used probabilistic method is the multivariate normal 

distribution (MVND) which has been widely adopted for the 

generation of virtual patients in in-silico clinical trials, such 

as, in hypertrophic cardiomyopathy (HCM) [6]. MVND 

utilizes multi-dimensional normal distributions given the 
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mean vector and the covariance matrix of the real data to 

generate synthetic data. However, a fundamental assumption 

in MVND is that the real data follow a normal distribution. 

Bayesian networks [7] have been also used for the generation 

of virtual data based on conditional probabilities across 

different network topologies, where the nodes represent the 

features. Another family of virtual population generation 

involves the application of machine learning algorithms, such 

as, the supervised tree ensembles (STE), the unsupervised tree 

ensembles (UTE) [8-10], and the artificial neural networks 

(ANNs) with radial basis functions [8-10] which are trained 

on the real data and then transformed into data generators. 

The emerging need for the development of computationally 

efficient virtual data generators yielding virtual data with 

reduced inter- and intra- correlation with the real data remains 

a technical challenge. The state-of-the-art virtual generators 

yield high-quality virtual data with reduced goodness of fit 

(gof) values, like the UTE [8]. The gof, however, assumes that 

the distributions belong to a particular set of distributions [11] 

which introduces biases in the outcomes. In addition, the STE, 

and the ANN [9, 10] require a target feature which affects the 

associations of the features in the virtual data. Furthermore, 

in the case of Bayesian networks, the number of all possible 

permutations of the edges within the network is infinite [7]. 

Moreover, the majority of these methods are computationally 

demanding due to the increased training time. 

Towards this direction, Gaussian Mixture Models (GMMs) 

with variational Bayesian inference (BGMM) were developed 

to generate large-scale virtual populations. The proposed 

method utilizes Dirichlet process mixtures as the BGMM’s 

prior structure, where the concentration of each component on 

the weight distribution is an exponential function of the 

number of components. Our approach was compared against 

state-of-the-art virtual data generators, including the Bayesian 

networks, the STE, the UTE, and the ANN for the generation 

of 20000 virtual patients for in-silico clinical trials in HCM 

yielding the lowest inter- and intra-correlation differences 

(0.013 and 0.012), in lower execution time (4.321) than the 

STE (46.537 sec) which had the second-best performance. 
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II. MATERIALS AND METHODS 

A. Data sharing and data quality control 

Anonymized data were obtained from 776 patients under 

the SILICOFCM project [12]. The dataset included 20 

features related to demographic and echocardiographic 

measurements. A data curation pipeline presented in a 

previous study [13] was applied on the clinical data to remove 

outliers, duplicated fields, and inconsistent data types using 

both univariate and multivariate methods [13]. 

B. Methods for virtual population generation 

1) Bayesian networks 

Bayesian networks [14] are based on the definition of a 

directed acyclic graph (DAG), say 𝑫 = (𝑽, 𝑬), where 𝑽 is a 

set of nodes and 𝑬 is a set of directed edges between the nodes 

in 𝑽. Each node 𝑣 ∈ 𝑽 is assigned to a random variable, say 

𝑥𝑣, with parents, say 𝑥𝑝𝑎(𝑣), with a probability distribution: 

𝑝𝑣 = 𝑝(𝑥𝑣|𝑥𝑝𝑎(𝑣)). () 

Assuming conditional independencies among the random 

variables, (1) can be re-written as: 

𝑝𝑣 = ∏ 𝑝(𝑥𝑐|𝑥𝑝𝑎(𝑐))

𝑐∈𝑪

∏ 𝑝(𝑥𝑑|𝑥𝑝𝑎(𝑐), 𝑥𝑝𝑎(𝑑))

𝑑∈𝑫

. (2) 

where, 𝑝(𝑥𝑑|𝑥𝑝𝑎(𝑐), 𝑥𝑝𝑎(𝑑)) is the conditional probability of 

𝑥𝑐 given the parents of both the discrete (𝑥𝑝𝑎(𝑐), set 𝑪) and the 

continuous (𝑥𝑝𝑎(𝑑), set 𝑫) variables, and 𝑝(𝑥𝑐|𝑥𝑝𝑎(𝑐)) is the 

conditional probability of 𝑥𝑐 given 𝑥𝑝𝑎(𝑐). The DAG structure 

is used to generate new instances consistent with causal 

dependencies between the features. If the node is discrete, the 

probability distribution in (1) is uniform, otherwise a mean 

and a variance is attached per discrete parent configuration. 

2) Tree ensembles 

Both supervised tree ensembles (STE) and unsupervised 

tree ensembles (UTE) were used for virtual population 

generation [8-10]. In the supervised schema, an ensemble of 

decision trees is built, where in each tree node, the univariate 

empirical cumulative distribution function (ECDF) of the 

splitting feature is captured. In the unsupervised schema, a 

density forest ensemble is built, where the ensembles are 

density trees instead of decision trees [8-10]. In this case, the 

variance is used for the selection of the splitting feature. 

3) Artificial neural networks 

Artificial neural networks (ANNs) were also used for 

virtual population generation, where Gaussian radial basis 

functions (RBFs) are used as activation functions [9, 10]. In 

this case, the Gaussian RBFs are defined as in: 

𝑦(𝒙) = ∑ 𝑤𝑖 𝑒𝑥𝑝 (−𝛽||𝒙 − 𝑥𝑖||
2

) ,

𝑁

𝑖=1

 (3) 

where 𝒙 is an input vector with 𝑁-features, 𝑥𝑖 is the center 

vector, 𝑦(𝒙) is the output, 𝑤𝑖  is the weight of the 𝑖-th neuron, 

and 𝛽 is a standard Gaussian parameter. 

4) Gaussian Mixture Models with variational inference 

A Gaussian mixture model (GMM) is a probabilistic model 

which assumes that the samples are generated from a mixture 

of a finite number of Gaussian distributions with unknown 

parameters [15]. A GMM approximation is defined as: 

𝑞(𝒙; 𝜽) = ∑ 𝑞(𝑖; 𝜽)𝑞(𝒙|𝑖; 𝜽)

𝑁

𝑖=1

, (4) 

where 𝑖 is the mixture component, 𝜽 is the set of hyper-

parameters, 𝑞(𝑖; 𝜽) are the mixture weights, and 𝑞(𝒙|𝑖; 𝜽) is 

a multivariate normal distribution (MVND) with mean 𝝁𝒐 and 

covariance matrix 𝜮𝝄, 𝑁(𝒙|𝝁𝒐, 𝜮𝝄). Α common approach for 

estimating 𝜽 is based on the expectation-maximization 

algorithm which maximizes the data likelihood [15]. The EM, 

however, might yield GMMs with topologies that might not 

fit well to the underlying data structures. A solution to this is 

provided by variational inference (VI), which seeks for a 

lower bound on the model evidence instead of the likelihood. 

The goal of the GMM with variational Bayesian inference 

(BGMM) is to estimate the hyper-parameter(s) 𝜽 in 𝑞(𝒙; 𝜽), 

so that the Kullback-Leibler (KL) divergence with the 

posterior distribution 𝑝(𝒙) is minimized. 

The KL-divergence is defined as in [16]: 

𝐾𝐿(𝑞(𝒙; 𝜽)||𝑝(𝒙)) = ∫ 𝑞(𝒙; 𝜽) 𝑙𝑜𝑔 (
𝑞(𝒙; 𝜽)

𝑝(𝒙)
) 𝑑𝒙

𝒙

, (5) 

where the quotient of the search model over the posterior is 

the logarithm of the evidence, 𝐿(𝜽). Minimizing (5) is the 

same as maximizing a lower bound on 𝐿(𝜽): 

𝑎𝑟𝑔𝑚𝑎𝑥𝜃 [∫ 𝑞(𝒙; 𝜽)(𝑙𝑜𝑔(𝑝(𝒙)) − 𝑙𝑜𝑔(𝑞(𝒙; 𝜽)))𝑑𝒙
𝒙

], (6) 

which refers to as the Evidence Lower Bound Objective 

(ELBO) [17]. In the case of GMM, where the search model is 

a multivariate normal distribution, (6) becomes: 

𝑎𝑟𝑔𝑚𝑎𝑥𝜃 [∫ 𝑞(𝒙; 𝜽)(𝑅(𝒙) + 𝑙𝑜𝑔(�̃�(𝑖|𝒙)))𝑑𝒙
𝒙

+ 𝐻(𝑞)], (7) 

where 𝑅(𝒙) is equal to 𝑙𝑜𝑔(𝑝(𝑥)) and 𝐻(𝑞) = 𝐻(𝑞(𝑥|𝑖)) =

− ∫ 𝑞(𝒙; 𝜽) 𝑙𝑜𝑔(𝑞(𝒙; 𝜽))𝑑𝒙
𝒙

 is the entropy of 𝑞(𝒙; 𝜽). 

5) Proposed BGMM approach 

Due to its Bayesian rationale, VI needs more hyper-

parameters than ΕΜ, the most important of these being the 

concentration prior of the BGMM [17-19]. A common 

practice is to define the BGMM’s prior structure according to 

a Dirichlet process mixture with concentration (or gamma) 

values equal to the inverse of the number of the Gaussian 

components [17-19]. In that case, however, a small weight 

concentration combined with many components would have 

a negative impact in the performance of the BGMM [17-19]. 

In this work, we utilize Dirichlet process mixtures as the 

BGMM’s prior structure, where the concentration of each 

component on the weight distribution is defined as an 

exponential function of different Gaussian components to 

yield a stable number of components across multiple runs. 

C. Virtual data quality evaluation 

1) Variability and explainability 

A key issue in virtual population generation lies in the 

underlying variability of the associations among the features 

in the virtual data which directly affects the explainability of 

the virtual data generators. In this work, we compute the intra-

correlation as the average of the correlation differences 

between the real and the virtual data, on a feature basis, to 

examine whether the associations between the features in the 

virtual data are preserved across multiple runs. The inter-
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correlation was also calculated as the overall mean correlation 

difference to examine the explainability of the generators. 

2) Kolmogorov-Smirnov (KS) goodness-of-fit (gof) test 

The goodness of fit (gof) test statistic [8] is used to quantify 

the similarity among the real and the virtual data as described 

in [8]. Large gof value denotes distributions with increased 

similarity with the absence of statistical significance. 

3) Kullback-Leibler (KL) divergence 

The Kullback-Leibler (KL) divergence [20] is defined as in 

(5), where 𝑞(𝒙; 𝜽) and 𝑝(𝒙) are replaced by the probability 

densities of the real data and the virtual data, respectively. KL 

values close to 0 denote distributions with small divergence. 

III. RESULTS 

A. Data quality evaluation 

All detected outliers and duplicated fields, as well as, 

features with high number of missing records were removed 

from further analysis. The final curated dataset included 11 

features, namely the: (i) “Ech_Echo_LA” (Left Atrium), (ii) 

“Ech_Echo_LVIDs” (Left ventricular internal dimension), 

“ABNORMAL_HOLTER” (Abnormal Holter indicator), 

“Ech_Echo_Aortic_Root”, “NYHA” (New York Heart 

Association class), “ARRHYTHMIA_NSVT” (Non 

sustained ventricular tachycardia), “Ech_Echo_PW” (Pulse 

Wave Doppler), “BMI” (Body Mass Index), “BSA” (Body 

Surface Area), “Height”, “High_Risk”. These features were 

used to evaluate the generators across multiple virtual patients 

in the range [1000, 20000] with a step 1000. 

B. BGMM hyperparameter tuning 

The average goodness of fit and inter-correlation values are 

depicted in Fig. 1 for components in the interval [1, 30]. For 

illustration purposes, the number of virtual patients has been 

restricted in the interval [1000, 10000]. 
 

 
Figure 1: Performance evaluation of the proposed BGMM across multiple 

virtual patients in range [1000,10000]. 
 

According to Fig. 1, the average gof value was less than 0.1 

for more than 5 Gaussian components. The average inter-

correlation difference was less than 0.04 across the multiple 

virtual populations’ executions and in some executions even 

less than 0.03. The average goodness of fit and correlation 

values from the four most prominent Gaussian components 

of Fig. 1 (i.e., for 19, 20, 24, and 25 components) are depicted 

in Fig. 2, along with the corresponding KL divergence and 

log-likelihood scores (which are referred to as BGMM 

scores). According to Fig. 2, the number of components that 

yielded virtual data with the smallest goodness of fit, KL 

divergence scores, correlation values, and the highest 

BGMM scores, across all executions, was 24. This number 

was combined with the Dirichlet concentration (gamma) 

value to generate multiple virtual patients. 
 

 
Figure 2: Performance evaluation of the proposed BGMM for the four best 

components across multiple virtual patients. 

C. Performance comparison 

For comparison purposes, the number of virtual patients 

was set to 20000. According to Table 1, the proposed BGMM 

approach achieved the lowest gof (less than 0.1) along with 

the UTE and the STE compared to the RBF-based ANN and 

the Bayesian networks. In addition, the proposed BGMM 

method yielded the lowest inter- and intra-correlation 

differences between the features in the virtual data (0.0133 

inter-correlation and 0.0121 intra-correlation). In all cases, 

the average KL divergence was less than 0.001. 

TABLE I: PERFORMANCE EVALUATION RESULTS. 

Method 

Average performance evaluation measures 

Goodness 

of fit 

Inter-

correlation 

difference 

Intra-

correlation 

difference 

KL 

divergence 

BGMM 0.0667 0.0133 0.0121 <0.001 

UTE 0.0211 0.0309 0.0281 <0.001 

STE 0.0261 0.0433 0.0393 <0.001 

ANN 0.1872 0.0829 0.0753 <0.001 

Bayesian 0.1864 0.0824 0.0749 <0.001 
 

According to Fig. 4, the average execution time of the 

proposed BGMM approach was faster than the UTE and the 

STE methods, yielding multiple virtual populations in 4.321 

sec against the UTE and the STE which required 46.537, and 

34.096 sec, respectively. The gap in the proposed BGMM 

during the generation of 10000 patients is related to the fast 
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convergence of the BGMM. The average execution times of 

the ANNs and the Bayesian methods were ignored due to their 

reduced performance against the previous methods. 
 

 
Figure 3: Execution time (sec) per virtual data generator. 

IV. CONCLUSIONS 

In this work, we utilized probabilistic Gaussian Mixture 

Models with variational Bayesian inference (BGMM) for the 

generation of large-scale virtual populations for in-silico 

clinical trials in HCM. The proposed approach uses weight 

concentration values for variational inference which are based 

on an exponentially decaying transformation of the number of 

Gaussian components. The proposed approach was compared 

against state-of-the-art virtual data generators, including, the 

Bayesian networks, the supervised tree ensembles (STE), the 

unsupervised tree ensembles (UTE), and the ANN yielding 

better inter- and intra- correlation differences in less 

execution time than the unsupervised tree ensembles which 

achieved the second-best performance. 

The proposed method for the estimation of the Dirichlet 

concentration of each component on the weight distribution 

yielded a stable number of components (24 components) 

across multiple virtual populations executions, where the 

prior structure of the GMM was defined according to the 

Dirichlet process mixture. The proposed BGMM with the 

optimal number of Gaussian components achieved the lowest 

goodness of fit values (less than 0.1) along with the UTE and 

the STE compared to the RBF-based ANN and the Bayesian 

networks (with average gof larger than 0.15). In addition, the 

proposed BGMM method yielded the lowest inter- and intra-

correlation differences between the features in the virtual data 

(almost 0.01), in less execution time (0.4319 sec) than the 

STE (46.5373 sec), which had the second-best performance. 

This confirms the computational efficiency of the proposed 

BGMM approach towards the generation of large-scale 

virtual populations for in-silico clinical trials in HCM. 

As a future work, we plan to extend the proposed approach 

for data augmentation in other clinical domains, apart from 

in-silico clinical trials, as well as, to investigate the effect of 

the Dirichlet processes on the prior structure of the Gaussian 

Mixture Models to yield more robust finite mixture models. 

REFERENCES 

[1] S. Sinisi, V. Alimguzhin, T. Mancini, E. Tronci, and B. Leeners, 
“Complete populations of virtual patients for in silico clinical trials,” 

Bioinformatics, p. btaa1026, Dec. 2020. 

[2] T. R. Rieger, R. J. Allen, L. Bystricky, Y. Chen, G. W. Colopy, Y. Cui, 
A. Gonzalez, Y. Liu, R. D. White, R. A. Everett, H. T. Banks, and C. J. 

Musante, “Improving the generation and selection of virtual 

populations in quantitative systems pharmacology models,” Progress in 
biophysics and molecular biology, vol. 139, pp. 15-22, Nov. 2018.  

[3] L. Zhao, M. J. Kim, L. Zhang, and R. Lionberger, “Generating model 

integrated evidence for generic drug development and assessment,” 
Clin Pharmacol Therap, vol. 105, no 2, pp. 338-349, Feb. 2019. 

[4] F. Stader, H. Kinvig, M. A. Penny, M. Battegay, M. Siccardi, and C. 

Marzolini, “Physiologically based pharmacokinetic modelling to 
identify pharmacokinetic parameters driving drug exposure changes in 

the elderly,” Clinical pharmacokinetics, vol. 59, no 3, pp. 383-401, Mar. 

2020. 
[5] A. Tucker, Z. Wang, Y. Rotalinti, and P. Myles, P, “Generating high-

fidelity synthetic patient data for assessing machine learning healthcare 

software,” NPJ digital medicine, vol. 3, no 1, pp. 1-13, Nov. 2020. 
[6] V. Pezoulas, N. Tachos, and D. Fotiadis, “Generation of virtual patients 

for in silico cardiomyopathies drug development,” In Proceedings of 

the 2019 IEEE 19th International Conference on Bioinformatics and 
Bioengineering (BIBE), pp. 671-674, Oct. 2019. 

[7] M. Sood, A. Sahay, R. Karki, M. A. Emon, H. Vrooman, M. Hofmann-

Apitius, and H. Fröhlich, “Realistic simulation of virtual multi-scale, 
multi-modal patient trajectories using Bayesian networks and sparse 

auto-encoders,” Scientific reports, vol. 10, no. 1, pp. 1-14, Jul. 2020. 

[8] V. C. Pezoulas, G. I. Grigoriadis, N. S. Tachos, F. Barlocco, and I. 
Olivotto, and D. I. Fotiadis, “Generation of virtual patient data for in-

silico cardiomyopathies drug development using tree ensembles: a 
comparative study,” In Proceedings of the 2020 42nd Annual 

International Conference of the IEEE Engineering in Medicine & 

Biology Society (EMBC), pp. 5343-5346, Jul. 2020. 
[9] M. Robnik-Sikonja, “Package ‘semiArtificial’”, CRAN, 2019. 

[10] M. Robnik-Šikonja, “Dataset comparison workflows,” International 

Journal of Data Science, vol. 3, no 2, pp. 126-145, May 2018. 
[11] V. Pinto, and R. Sooriyarachchi, “Comparison of methods of estimation 

for a goodness of fit test–an analytical and simulation study,” Journal 

of Statistical Computation and Simulation, vol. 1-21, Jan. 2021. 
[12] L. Velicki, D. G. Jakovljevic, A. Preveden, M. Golubovic, M. Bjelobrk, 

A. Ilic, S. Stojsic, F. Barlocco, M. Tafelmeier, N. Okwose, M. Tesic, P. 

Brennan, D. Popovic, G. A. MacGowan, A. Ristic, N. Filipovic, L. S. 
Maier, and I. Olivotto, “Genetic determinants of clinical phenotype in 

hypertrophic cardiomyopathy,” BMC Cardiovascular Disorders, vol. 

20, no 1, pp. 1-10, Dec. 2020. 
[13] V. C. Pezoulas, K. D. Kourou, F. Kalatzis, T. P. Exarchos, A. 

Venetsanopoulou, E. Zampeli, S. Gandolfo, F. Skopouli, S. De Vita, A. 

G. Tzioufas, and D. I. Fotiadis, “Medical data quality assessment: On 
the development of an automated framework for medical data 

curation,” Computers in biology and medicine, vol. 107, pp. 270-283, 

Apr. 2019. 
[14] M. Scanagatta, A. Salmerón, and F. Stella, “A survey on Bayesian 

network structure learning from data,” Progress in Artificial 

Intelligence, vol. 8, no 4, pp. 425-439, May 2019. 
[15] S. Meemansa, S. Akrishta, K. Reagon, E. M. Asif, V. Henri, M. 

Hofmann-Apitius, and F. Holger, “Realistic simulation of virtual multi-

scale, multi-modal patient trajectories using Bayesian networks and 
sparse auto-encoders,” Scientific Reports, vol. 10, no. 1, Jul. 2020. 

[16] N. Manouchehri, H. Nguyen, P. Koochemeshkian, N. Bouguila, and W. 

Fan, “Online Variational learning of Dirichlet process mixtures of 
scaled Dirichlet distributions,” Information Systems Frontiers, vol. 22, 

no. 5, pp. 1085-1093, Jul. 2020. 

[17] V. Gallego, and D. Ríos Insua, “Variationally inferred sampling 
through a refined bound,” Entropy, vol. 23, no 1, pp. 123, Feb. 2020. 

[18] N. Manouchehri, H. Nguyen, P. Koochemeshkian, Bouguila, N., and 

W. Fan, “Online Variational learning of Dirichlet process mixtures of 
scaled Dirichlet distributions,” Information Systems Frontiers, vol. 22, 

no. 5, pp. 1085-1093, Jul. 2020. 

[19] H. Nguyen, M. Kalra, M. Azam, and N. Bouguila, “Data clustering 
using online variational learning of finite scaled dirichlet mixture 

models,” In Proceedings of the 2019 IEEE 20th international 

conference on information reuse and integration for data science (IRI), 
pp. 267-274, Aug. 2019. 

[20] S. Ji, Z. Zhang, S. Ying, L. Wang, X. Zhao, and Y. Gao, “Kullback-

Leibler Divergence Metric Learning,” IEEE Transactions on 
Cybernetics, pp. 1-12, Jul. 2020. 

1677


