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Abstract— Despite prevention efforts, the prevalence of work-
related upper extremity musculoskeletal disorders (WRUED) is
increasing. A limit in the development of preventive interven-
tions is the lack of devices that can measure and process sEMG
signals in order to provide real-time reliable information on
muscular fatigue of the upper limb in relation to the physical
demands of the work. In this paper, the development and
evaluation of a real-time muscle fatigue detection algorithm
based on sEMG will be presented. The proposed algorithm uses
the median frequency of sEMG power spectrum density (PSD)
obtained with the Continuous Wavelet Transform (CWT) as an
indicator of the muscle fatigue level. To extend the algorithm’s
efficiency to dynamic tasks, a muscle contraction detection mod-
ule is added in order to remove the segments when the muscle
is not contracting. To assess the algorithm’s performance, eight
healthy adults performed simple static and dynamic shoulder
tasks using different loads. The results of the proposed time-
frequency method (i.e. CWT) were first compared to those of the
traditional Short Time Fourier Transform (STFT). It was shown
that the CWT performs better than the STFT in both static
and dynamic loading conditions. The validity of the algorithm’s
output as a muscle fatigue indicator was verified by comparing
the output’s decrease rate with different loads. As expected,
the algorithm’s fatigue indicator decreased faster over time
with heavier loads. It was also shown that the initial muscle
fatigue estimation output is independent of the load. Finally,
we studied the proposed muscle contraction detection module’s
efficiency to overcome issues associated with dynamic tasks. We
observed a substantial improvement of the smoothness of the
fatigue indicator’s evolution by using of the muscle contraction
detection module.

I. INTRODUCTION

Work-related upper extremity musculoskeletal disorders
(WRUED) are a major problem in modern societies as
they affect workers’ quality of life and lead to absenteeism,
productivity loss and early retirement [1]. Despite prevention
efforts, the prevalence of these disorders is increasing [2].
Given the importance of this issue, workplace interventions
must be improved. Nevertheless, there is a severe lack of
adapted tools to better prevent these injuries.

Working in a fatigue state is known to lead to WRUED.
The development of WRUED could thus be potentially
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prevented by using a real-time feedback system that keeps
track of muscle fatigue state and warns users if they are at
risk of injury. Studies have shown that the level of muscle
activation as well as fatigue can be detected using surface
electromyography (sEMG) [3], [4]. While the analysis of
muscle activation is based on the time domain, muscle
fatigue is rather studied in the frequency domain [5]. Indeed,
metrics such as median frequencies (MDF) and mean fre-
quencies (MNF) of the sEMG power spectrum density (PSD)
are commonly used as early indicators of neuromuscular
changes associated with muscle fatigue [6]. According to [7],
these metrics should decrease as the muscle gets tired due
to the reduction of muscle fibre conduction velocity. Muscle
fatigue has mostly been studied offline, that is, with sEMG
signals first recorded, which are then analyzed later on a
computer [5]. However, to serve as a preventive measure, the
signal processing and the analysis underlying muscle fatigue
estimation must be performed in real-time by a device able
to provide immediate feedback to the user. Over the past few
years, different research groups have developed EMG fatigue
detection algorithms adapted for real time monitoring of
isometric contractions (i.e. static tasks) [8]–[12]. In the work-
place, however, complex dynamic contractions are common.
Muscles are contracted only for short periods of time, unlike
during isometric contractions. As the sEMG PSD MDF has
been shown to be reduced when muscles are not contracting
[13], this metric’s output could be altered during dynamic
tasks. Traditionally, the sEMG time-frequency analysis for
fatigue detection has mostly been performed with the use of
the Fourier Transform [5]. However, the Fourier Transform
brings multiple additional difficulties when used in real time
and during dynamic tasks. This comes from the fact that
it requires a quasi-stationary signal. Yet, the condition is
only met during isometric contractions. Other time-frequency
analysis methods have also been considered [5] and the
Continuous Wavelet Transform (CWT) has been proposed
as an alternative, giving smoother estimates of the PSD
frequency drop [13]. Besides, instead of aiming for smoother
results, others have thought of ways to get rid of the irrelevant
parts of the signal (i.e. when the muscle is at rest). One
offline basic approach is for an expert to manually select
parts of the signal in which the muscle is contracted to
perform the analysis [14]. However, this method cannot be
used for real-time feedback applications. To this end, [15]
has presented a peak detection method to only consider local
maximums which can be applied in real-time. However, this
approach is only applicable to cyclic dynamic contractions
(e.g. walking) which do not represent adequately usual tasks
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performed by workers.
The general aim of this project is to develop and vali-

date a real-time biomedical device able to analyze shoulder
muscle fatigue in real-time and to provide feedback to
the users on their muscle fatigue level in order to prevent
musculoskeletal injuries. The objective of this paper is to
develop and preliminary validate a muscle fatigue estimation
algorithm for simple isometric and dynamic upper limb tasks
(i.e. one elevation plane). The proposed algorithm uses the
median frequency of sEMG PSD obtained with the CWT
as an indicator of the muscle fatigue level. To assess the
dynamic contractions issue, the proposed algorithm includes
a muscle contraction detection module which automatically
determines the segments of the raw sEMG signal that need
to be removed prior to analysis/processing.

The specific objectives of the current paper are to create
a real-time algorithm that provides an output which 1) is
smooth (i.e. robust to transient estimations errors expected
during real-time assessment of muscle contractions which
would give false fatigue alerts); 2) is a valid indicator of
the muscle fatigue; 3) is not affected by other features than
the muscle fatigue state (e.g. load magnitude); 4) overcomes
issues associated with the periods when muscles are not
active during dynamic tasks.

The hypothesis are as follows. 1) For simple tasks during
which the load does not change, one should obtain a smooth
and non-fluctuating PSD MDF (fatigue indicator) decrease.
As proposed in the literature, the CWT method should
provide a smoother fatigue indicator decrease than the classic
Short Time Fourier Transform (STFT) [13]. 2) It is well
known that muscles fatigue faster with heavier loads. The
fatigue indicator should thus decrease faster for heavier
loads than for lighter ones. 3) As the sEMG sensors are
not removed from the participants between tasks, the initial
fatigue indicator should remain similar for different loads if
given enough rest between tasks. 4) As the sEMG PSD MDF
has been shown to be lower when muscles are not contracting
[13], the fatigue indicator decrease should be more stable for
dynamic tasks with the muscle contraction detection module
than without it.

The paper is organized as follows: Section II presents the
design of the proposed algorithm with both the CWT and the
STFT, which serves as reference for comparison purposes.
Section III covers the data acquisition, the experimental and
the statistical analysis methods while Section IV presents
the fatigue results and discussion. Finally, a conclusion is
presented in Section V.

II. ALGORITHM

As illustrated in Fig. 1, before processing the data, the
proposed algorithm first requires a calibration phase during
which the user performs three Maximum Voluntary Contrac-
tions (MVC) of the targeted muscle. Indeed, each person
has different sEMG signal characteristics, which can also
slightly differ from day to day. One metric is obtained from
the calibration (i.e. maximal signal magnitude). It has been
shown that the magnitude of the sEMG signal increases

with the level of muscle activation. Therefore, the maximal
magnitude is measured during the MVC since it is the highest
level of voluntary activation of the muscle. The maximal
magnitude of the signal will be used later in the muscle
contraction detection phase to determine if the signal is valid
or not.

Add to W1

STFT CWT

Average 
on W2STFT

Enough Data 

in W1  within 
Lw1 ?

No

Valid data 
according to 
Threshold? 

Yes

No

Add MDF  to 
W2STFT

Add MDF to 
W2CWT

Enough Data in 
W2STFT  within 

LW2STFT ?

Enough Data in 
W2CWT within 

LW2CWT ?

Get next point

  δt1 achieved? 

(Figure 4) 

   δw1 achieved?  
(Figure 5)

Yes

Yes Yes

NoNo

  δt2STFT achieved?

(Figure 4) 
  δt2CWT achieved? 

(Figure 5)

Yes Yes

Average 
on W2CWT

No

Yes Yes

No

No

No

C
o

n
tractio

n
 

d
etectio

n

M
D

F w
ith

 C
W

T

M
D

F 
w

it
h

 S
TF

T

M
o

vin
g A

v
e

ra
g

e

Current 
Fatigue 

Indicators

Calibration

M
e

d
ian

 Frequ
en

cy

Fig. 1. General algorithm

Once the calibration has been performed, the fatigue
detection algorithm begins. The proposed algorithm can be
divided in three main phases (i.e. muscle contraction de-
tection, median frequency computation and moving average
computation) in which the sEMG samples are processed
one by one as presented in Fig. 1. First, in the muscle
contraction detection phase, the raw signal is removed when
the muscle is not contracting since the MDF of the signal is
irrelevant in this case. This phase is especially useful for
dynamic contractions. Secondly, in the median frequency
computation phase, the MDF of the sEMG PSD is computed.
For comparison purposes, the MDF was assessed with two
different methods, namely the CWT and the STFT. Finally,
in the moving average computation phase, a moving average
is performed on the MDF data in order to smooth the median
frequency over time. The output of the moving average
computation phase is what will be referred as ”fatigue
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indicator” in this paper. The three algorithm’s phases are
presented in detail in the following subsections.

The proposed algorithm has been designed to be used
in real time, meaning that it does not need the entire data
sequence to be effective. In other words, as opposed to
offline algorithms, it can provide feedback on events that
occurred within the last seconds. Here, the algorithm has
been validated offline for comparison purposes. However, to
simulate real-time analysis, samples are processed one by
one in the algorithm as if it was being acquired in real time.

A. Muscle contraction detection

The algorithm first verifies if the raw data signal is valid
(i.e. if the muscle is contracted). This phase is especially
useful for dynamic tasks since the muscles are not always
contracted. To this end, the envelope of the signal (Fig. 2B) is
obtained from the raw signal (Fig. 2A) through a rectification
followed by a low-pass Butterworth filter (7.5Hz, 2nd order)
applied to the last three points of the rectified signal [16]. A
proportion (e.g. 10%) of the envelope’s maximal magnitude
obtained in the calibration phase is then used as a threshold
(Fig. 2B). This threshold determines if the muscle is con-
tracted or not, and thus, if the current sEMG sample is valid
or not. Invalid samples (i.e. noise) are then removed from
the signal (Fig. 2C).

A

Raw Data

Time (s)

C

Valid data

B

Envelope
Threshold

Fig. 2. Example of the contraction detection steps on a dynamic tasks

B. Median Frequency computation phase

The aim of this step is to compute either the CWT or
STFT on the signal and to extract the MDF from it. In
order to perform the STFT/CWT, enough data points must
be accumulated for the computation to be valid. This number
of points is described as the time window W1 (e.g. the
equivalent of 1 second of valid data). Considering only static
tasks in which the muscle is always contracted, this step
would be straightforward. However, in dynamic tasks, the last

W1 samples might not all be valid. Therefore, the algorithm
allows to look further back in time in order to accumulate
enough valid data to perform the STFT/CWT (i.e. the number
of valid samples described by W1). The valid portions of
the signal are then concatenated. However, it would not be
suitable to join data that occurred too long apart because
they would not be relevant to the current fatigue situation.
Consequently, the algorithm only allows to join past data if
they occurred less than LW1 time ago (e.g. 5 seconds). This
can lead to different scenarios that are presented in Fig. 3.
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Fig. 3. Possible scenarios of adjusted W1 (cyan) depending on current
data validity and LW1 (Red) Scenario 1 : All last W1 EMG data are valid
and STFT/CWT is computed with these samples. Scenario 2 : The current
EMG data is not valid : STFT/CWT is not computed. Scenario 3: The last
W1 samples contains invalid data: Invalid data are removed, the last W1
valid samples are joined together (if those data are contained in LW1) and
STFT/CWT is computed with these samples. Scenario 4 : The last W1
samples contains invalid data and there is not enough valid data in LW1 to
replace invalid data: STFT/CWT is not computed.

In scenarios for which this applies, either the STFT or
the CWT is computed over the last W1 valid samples. In
both methods, the signal is transposed into the frequency
domain from which the MDF is extracted. In this paper, both
the STFT and CWT are computed for comparison purposes
but, in the end, only the CWT will be used. The difference
between the two methods stands in the way the sEMG signal
is transposed into the frequency domain as detailed below.

a) Short-Time Fourier transform: The Fourier Trans-
form is a mathematical transform that determines which
frequencies are present in a signal and what are their
contribution on that signal. Typically, the entire signal is
used. However, in the context of sEMG signal analysis, the
objective is to detect the MDF drop over time. Therefore, to
observe a decrease in MDF, the Fourier transform must be
applied over small consecutive time windows (here defined
as W1) (Fig. 4). This method is called the Short-Time Fourier
Transform (STFT). To do so, it is desired to use the small-
est possible time windows. Nevertheless, the Heisenberg
uncertainty principle must be taken into account, meaning
that, by reducing the time windows, the resulting frequency
precision is decreased [5]. There is thus a tradeoff to be
made between time lag and precision to achieve real-time
fatigue estimation. In order to minimize this tradeoff, frames
of W1 are overlapped with a time increment of (δt1) (Fig. 4).
The time increment (δt1) is the best compromise between
reducing the time lag and reducing the processing time.
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Indeed, although overlapping windows increases precision,
it can also substantially increase processing time.
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Fig. 4. Example of the Short Time Fourier Transform (STFT) method
during a static task

b) Continuous Wavelet Transform: As opposed to the
STFT, the CWT gives higher resolution time-frequency rep-
resentations [13]. As a matter of fact, instead of getting one
power spectrum for the entire window W1 as for the STFT
(Fig. 4), the CWT gives an estimate of the power spectrum
density (PSD) for each point within W1. Therefore, in theory,
there is no need to overlap W1 frames. However, since there
is a border effect (the precision for the few first and last
points of W1 is reduced), a small window overlap of 2xδw1
is used to ignore the first and last δw1 data points as shown
in Fig. 5. In this algorithm, the CWT is obtained using the
analytic Morse wavelet with frequency range between 20 and
500Hz and 16 voices per octave.
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Fig. 5. Example of the Continuous Wavelet Transform (CWT) method
during a static task

C. Moving average computation phase

In order to smooth the resulting median frequency esti-
mation, a moving average is performed. The length of this
window is defined as W2. Similarly to the process of W1
and LW1, if there is not enough data in the last W2 points
at a given time, past data can be joined into W2 up to a
maximum time defined as LW2. Applying a moving average
to the MDF data, however, increases processing and lag time.
Yet, it is necessary since it reduces chances of giving false
fatigue alerts that would come from local short term MDF
variations. In offline applications, moving averages are not
used since the MDF drop is, for instance, obtained through a
linear regression that gets ride off the high standard deviation
(Fig. 6 (a)) [6]. Nevertheless, in a real-time application, linear

regression can hardly be used. In order to remove short term
variations of the MDF estimation, it is thus proposed to use
a moving average instead. The resulting estimation is then
smoothed giving a better visual image of the MDF drop
(Fig. 6 (b)).

(a) (b)

Fig. 6. a) Linear Regression (pink) and b) Moving Average (red) on MDF
data (black)

The time windows (W2) are overlapped to reduce the lag
between events and feedback (Fig. 7). The window increment
(δt2) is chosen to be a compromise between reducing the
time lag and the processing time.
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Fig. 7. Example of the Moving average computation phase

III. METHODS

A. Data acquisition and values of the algorithm’s parame-
ters

sEMG data were recorded using commercial surface EMG
sensors (Trigno Wireless EMG system, Delsys, Boston,
Massachusetts, USA) placed on the medial deltoid of the
dominant arm. The skin was previously cleaned with alcohol
to decrease contact impedance. The sEMG signal was sam-
pled at a rate of 1926.926 Hz. It was then passed through
a second order Butterworth band-pass filter (20-500Hz) [17]
and through an Infinite Impulse Response (IIR) Notch filter
with 60Hz corner frequency to get rid of the power line noise.

The threshold used in the muscle contraction detection was
set to 10% of the envelope’s maximal magnitude obtained in
the calibration phase.

Table I presents the values of the algorithm’s time de-
pendent parameters used in the experiment. As it can be
observed, all parameters except δt2 are defined in terms of
time and numbers of samples. These values were selected
according to an acquisition frequency of 1926.926 Hz. How-
ever, using another frequency would result in modification of
either the time value or the number of samples depending
on the parameter. Concerning the parameter δt2, the value in
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time is irrelevant since it represents a number of W1 samples.
Thus, it’s time value depends on δt1.

TABLE I
VALUES IN TERMS OF TIME AND NUMBER OF SAMPLES OF THE

ALGORITHM’S PARAMETERS USED IN THE EXPERIMENT CONSIDERING

AN ACQUISITION FREQUENCY OF 1926.926 HZ

Value in Value in number
Parameter time (s) of samples (pts)

W1 1.1 2120
W2 4 7708
LW1 5 9635
LW2 10 19269
δw1 0.05 96
δt1 0.0052 10
δt2 − 10

B. Experimental Methods

Eight healthy adults with no self-reported musculoskeletal
conditions (i.e. pain, movement limitations, recent injuries)
took part in a testing session (6 women and 2 men, right-
handed, 23-34 years old). The protocol consisted of 7
arm elevation tasks in the frontal plane (humeral abduction
[abd]/adduction [add]) for the dominant arm with 25-minute
rest between tasks to avoid residual fatigue from previous
tasks. The tasks were:

1) Maximum Voluntary Contractions (MVC) in abd
2) Light Static 90◦ abd
3) Heavy Static 90◦ abd
4) Light Static 90◦ abd
5) Heavy Static 90◦ abd
6) Light Dynamic 0-90◦ abd
7) Heavy Dynamic 0-90◦ abd

The MVC is the maximal force one can produce under
given static muscle contraction conditions. In order to avoid
compensation as much as possible during the MVC eval-
uations, the subject was seated without backrest, with the
dominant arm at 90◦ of abduction. The experimenter applied
a manual dynamometer perpendicular to the distal and dorsal
end of the forearm. Three maximum contractions of about 10
seconds were performed, with a gradual rise over one second,
a plateau of 7-8 seconds and a gradual release. A one-minute
rest was given between contractions. The maximum value (in
kg) obtained during the three tests was recorded and used to
determine the loads for tasks 2 to 7 according to Table II.
For each participant, two levels of loads were considered
namely light and heavy, which correspond respectively to
values around 15% and 30% of MVC. As the loads available
were of finite mass [0.60, 1.30, 1.70, 2.10, 2.27, 3.30, 3.96,
and 5.00 kg], the real % of MVC varied slightly across
participants. For instance, as shown in Table II, participants
with a MVC between 6 and 9 kg used a 1.30 kg for 15%
MVC tasks, leading to an actual % of MVC between 14.61
and 21.31%.

TABLE II
LOADS USED DEPENDING ON MAXIMAL MVC (KG)

MVC Light tasks Heavy tasks
range Load Actual Load Actual
(kg) (kg) %MVC (kg) %MVC

[3, 6[ 0.60 ]10.17, 19.30] 1.30 ]22.03, 41.84]
[6, 9[ 1.30 ]14.61, 21.31] 2.27 ]25.51, 37.21]

[9, 12[ 1.70 ]14.29, 18.68] 3.30 ]27.73, 36.26]
[12, 15[ 2.10 ]14.09, 17.36] 3.96 ]26.58, 32.73]
[15, 18[ 2.27 ]12.68, 15.03] 5.00 ]27.93, 33.11]

Each task began with the participant standing straight and
looking forward, arms along the body, with the weight in the
dominant hand. A mirror was placed in front of participants
to provide feedback on their posture during the tasks (to
avoid compensation such as shoulder shrugging or trunk
lateral flexion). Participants were encouraged by the exper-
imenter to keep an adequate posture without compensating
during the task. For static tasks, the participants were asked
to lift their dominant arm to 90◦ of abduction (Fig. 8) and
to keep this position until they were unable to maintain it.
During dynamic tasks, participants were asked to perform
0◦ to 90◦ abductions with their dominant arm with a 0.8Hz
rhythm (which was provided by a metronome) until they
could not lift the weight anymore without compensations.

Fig. 8. Static position: 90◦ in abduction

C. Statistical analysis

1) The fatigue indicators’ evolution obtained from the two
methods, namely STFT and CWT, were compared in order
to determine which of the two exhibits the least fluctuations
(is the smoothest). Since there is no theoretical curve rep-
resenting the expected decrease in frequency, each of them
was compared to itself by using multiple linear regressions
performed on curve segments of 10sec length every 2sec.
For each regression line, the root mean square error (RMSE)
between the linear regression and the curve’s corresponding
points was calculated. An average RMSE is then obtained
for each curve, giving an estimate of its fluctuations. A one-
way repeated measures ANOVA is then performed on the
average RMSE to detect significant changes in smoothness
between the two methods in both static and dynamic tasks.
2) To certify that the proposed algorithm is a valid indicator
of the muscles fatigue, it must decrease faster for heavier
loads than for lighter ones. A one-way repeated measures
ANOVA was thus performed one the MDF slopes of all
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tasks to observe significant changes between loads. η2p and
ω2 are used as estimates of effect size. 3) In order to confirm
that the algorithm’s initial output is not altered by the load,
the variations of initial frequencies for all static tasks(four)
for each participant is compared to the variations between
participants via an intra-class correlation (ICC). 4) Finally,
the effectiveness of the contraction detection which assesses
the problems that comes with the times when muscles are at
rest during dynamic tasks, is visually verified by comparing
results with and without the contraction detection phase.

IV. RESULTS AND DISCUSSION

A. CWT vs FFT (smoothness analysis)

Fig. 9 shows an example of the proposed algorithm fatigue
indicators’ evolution for participant 1 during the heavy static
task. As it can be qualitatively observed, the evolution of
the fatigue indicator of the CWT method is smoother than
with the STFT (CWT leads to a steady decrease with fewer
oscillations). This behaviour is consistent across tasks and
participants. Quantitatively, the average RMSE between the
fatigue indicator curve and its linear regression approxima-
tions is statistically significantly smaller for the CWT method
(1.200 +- 0.353) compared to the STFT (1.985 +- 0.877),
t16 = −1.302, p < .001, 95%CI[−1.684,−0.912]. This
difference is observed for both static and dynamic tasks.
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Fig. 9. Evolution of fatigue indicators obtained with the CWT (yellow)
and STFT (red) methods along with their linear regressions (CWT : green,
STFT : pink) for a static task

B. Slopes (Light vs heavy)

As it can be observed in Fig. 10, slopes showed to be
statistically significantly steeper for heavy tasks than for light
tasks (F1/7 = 226.845, p < .001, η2p = 0.970, ω2 = 0.595).
In the same way, slopes were statistically significantly steeper
for static tasks than for dynamic ones (F1/7 = 8.968, p =
0.02, η2p = 0.562, ω2 = 0.242). Further studies will be
required to conclude on the reasons of this result but one
hypothesis is that the duty cycle is lower for dynamic tasks
since the muscle is not in constant contraction.

C. Initial fatigue indicator (static tasks)

Fig. 11 shows initial (beginning of the task) fatigue
indicator values of all four static tasks for each participant.
ICC(1) value for initial fatigue indicator is 0.952 with inter

Fig. 10. ANOVA analysis on slopes for static and dynamic tasks performed
with light (white) and heavy (black) loads

and intra subjects variance of 107.7 and 5.4. This means that
95.2% of the variance is attributable to differences between
subjects and only the 4.8% remaining is explained by within-
subject variations. This indicates that for each participant,
initial fatigue indicators were similar for all light and heavy
static tasks.

Fig. 11. Initial fatigue indicator values of each participant for the four
static tasks (Light (1) : Blue, Heavy (1) : Orange, Light (2) : Green, Heavy
(2) : Yellow)

D. Muscle Contraction detection module efficiency

Fig. 12 presents an example of the evolution of the
fatigue indicator for a dynamic task with and without the
muscle contraction detection module. By observation, it can
be qualitatively observed that the evolution of the fatigue
indicator is smoother with the muscle contraction detection
module than without it.
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Fig. 12. Example of the evolution of the fatigue indicator for a dynamic task
with (yellow) and without (red) the muscle contraction detection module.
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E. Limitations

There are few limitations to our study. Muscle fatigue
remains subjective to the participants and can also vary
depending on the experiment conditions. As the experiment
design does not allow the participants to reach complete
exhaustion, we cannot discuss the final frequencies and
conclude on the state of the fatigue indicator at the end
of the tasks. Additionally, in this study, tasks were per-
formed in abduction only. Furthermore, static tasks were
only performed at an elevation angle of 90◦. Results might
differ for movements in other elevation planes and angles.
Finally, dynamic tasks were performed at a 0.8Hz which
does not allow muscles to rest between contractions. Thus,
we cannot conclude on the proposed algorithm’s validity for
complex tasks such as the ones performed in workplaces (i.e.
punctuated by pauses and performed in different elevation
planes and angles).

V. CONCLUSION

The objective of this paper was to develop and primarily
validate an algorithm capable of estimating muscle fatigue
for real time applications including dynamic tasks. We
showed that the proposed method provides smoother fatigue
indicator evolution than the traditional STFT. Moreover,
we demonstrated that our output is a valid indicator of
the muscles fatigue as slopes from light and heavy tasks
were statistically different. Besides, we verified that our
fatigue indicator is not affected by load magnitude. Finally,
we investigated our muscles contraction detection module’s
efficiency to overcome issues associated with the periods
when muscles are not contracting during dynamic tasks. We
observed a substantial improvement of the smoothness of the
fatigue indicator’s evolution with the use of the module.

Future work: The long-term objective of this work is
to develop a low-cost wearable device using sEMG to
provide feedback to workers in order to reduce the risk
of musculoskeletal injuries. The next step will be to adapt
and validate this algorithm applied to complex movements
(i.e. in different elevation planes and angles). Indeed, the
shoulder (or glenohumeral joint) is considered as complex
joints, meaning that it has several degrees of freedom and,
therefore, can move in different planes [18]. Furthermore,
the shoulder muscles are used differently depending on the
movements performed. Thus, the algorithms may need to
consider several muscles simultaneously and adjust their
processing methods according to the movements performed.
Additionally, for identical loads, the fatigue indicator de-
creased faster for static than dynamic tasks. Further studies
will thus be required to conclude on the reasons of this result.
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