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Abstract— Recently, emerging technologies are being used to
solve state of the art problems in rehabilitation and physio-
therapy. The increasing power of portable sensors is making a
great choice for analysis of movements during daily activities.
We previously developed a method to personalize the measure
of balance only using kinematic data from Kinect. This paper
presents the results of simultaneous quantification for the
postural balance, motion classification and its quality with
Synergy Probe. Previously, it was not possible to verify what
happens when the motion balance is unstable. With motion
quality index along with the stability, we can quantitatively
evaluate the balance stability considering the motion class and
its intensity during whole-body exercise.

I. INTRODUCTION

In recent years, emerging technologies are being used
to solve state of the art problems in rehabilitation and
physiotherapy. Serious games and Virtual Reality systems
are been used to give motivation and increase participation
in the rehabilitation sessions [1]–[3]. The increasing power of
wearable and portable sensors is making them a great choice
for analysis of movements and daily life activities [4]. In the
case of fall risk assessment, research teams are using low-
cost devices to measure balance and the risk of fall for the
elderly [5], [6].

Our current project focuses on the use of Kinect 2 to
calculate a personalized balance measurement for online
visualization [6]. The personalized data is more suited, for
example, for the elderly, since anthropometric table data are
based on the average adult population [7], [8]. Moreover, the
use of zero rate of change of angular momentum (ZRAM) [9]
allowed the analysis of stability outside the support polygon.
The calculation of ZRAM depends only on kinematic data,
thereby a force platform is not needed after calibration. This
feature gives more freedom of movement, and since the
subject does not need to step onto the force platform, there is
less risk of falling during rehabilitation sessions for patients.

Although our system gives information about stability,
it does not show any information about the movement
performance associating to the stability. The operator needs
to pay attention to multiple parts of the body and the ZRAM
to analyze the part of the movement where the instability
occurs. To simplify the observation of the movement and
still get useful feedback, we developed the concept of syn-
ergy probe to get instant classification and quality of the
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movement [10] [11]. The algorithm compares the subject’s
movement with synergies invariant over speed and returns the
most similar one and the overall quality. The training phase
needs only one recording of each movement to be classified.
Also, one set of synergies can be used for different subjects.
This paper presents the results of simultaneous quantification
both for the personalized balance and motion classification
and its quality with synergy probe.

II. METHOD

A. Stability with Zero Rate of change of Angular Momentum

ZRAM is a position on the ground that represents where
the reaction force is applied or where it should be applied
when the movement is unstable (i.e., the point is outside the
support polygon). It can also be interpreted as the position
in which a line in the direction of the reaction force passing
through the center of mass (CoM) intercepts the ground
plane. This position is calculated as [6]

pf =
(p0 − c) · n

f · n
f + c, (1)

where f is the reaction force, c is the CoM, p0 is a point
defining the ground, n a vector normal to the ground and pf
the ZRAM position. The reaction force f can be estimated
as [12]

f = M · (c̈− g), (2)

where M is the mass of the subject, g is the gravity, and c̈
the acceleration of CoM.

Since f depends on c and we only need its direction, the
only parameter we need to find is c. It can be obtained with
the statically equivalent serial chain (SESC) method [13],
[14]. The SESC model is a linear system that multiply the
orientation of the body segments by a set of parameters spe-
cific to the subjects. We used nine segments to represent the
body. The specific parameters can be calculated beforehand
with a force platform. When the body is not moving, the CoP
calculated with the force platform is a good approximation
of the ground projection of CoM [13], and if the number of
measured postures is large enough, the linear system can be
solved without the third dimension of CoM [15].

The stability against the risk of falling is calculated
according to the position of pf in the Minimum Volume
Enclosing Ellipsoid (MVEE) [16] of the support polygon.
The best stability is achieved when the distance between pf
and the center of the MVEE is 0. The movement is unstable
when the distance of pf to the center is bigger than the
distance of the vertices of the support polygon to the center.
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These vertices are based on the segments representing the
feet that are in contact with the ground. We used one color
to visualize the stability of 0 and another color for 1. Any
value between is visualized as an interpolation of the two
colors.

B. Classification with Synergy Probes

Besides the visualization of stability, we also want to show
a simple representation of the movement. We developed in
a previous project a system that classifies the full body
movements in real-time and also gives a measure to the
quality of the movement [10]. The system uses as input the
normalized speed of the degrees of freedom (DoFs), thereby
it was possible to use the data from Kinect 2 and combine
with the stability measurement.

We developed the concept of synergy probes for direct
comparison of the synergies with the normalized speed.
The classical modular concept of synergies is that the same
pattern signal controls different DoFs or muscles, and a
movement is a linear combination of synergies [17]. In
the case of spatial synergies [18]–[20], the synergies are
represented by a matrix W where the rows are the DoFs
and the columns are different synergies. The coefficients of
the linear combination are represented as a matrix C where
the rows are the coefficients of the synergies and the columns
are the variation of these coefficients over time. Then, the
data V is defined as

V = WC. (3)

For the synergy probes, the data at a time t is defined as

Vn[t] =
V [t]

n[t]
= WC[t], (4)

where V n[t] is the normalized data and n[t] the normal-
ization factor. The normalization of the data extracts the
overall amplitude of the data. Therefore, the steady-state of
a movement can be found and stored as a synergy (i.e.,
a column of W). We used gradient descent with additive
rule [21] and a competitive term [10] to iteratively find the
synergies that represent the movements in Vn. The equation
of the iterative function is

W = W + α(VnC
T -WCCT -β), (5)

where α is a positive constant and β is a positive constant
that decays other synergies so that only one synergy is active
at a time. Its values were defined empirically. We update W
with Eq. 5 and find C with nonnegative least square [22]
until the reconstruction WC converges to Vn.

Vn[t] can be represented as a point moving in the m-
dimensional space of the normalized speed of the DoFs.
Each position of this space represents a different movement,
i.e., a different combination of DoFs. Hence, the synergies
are specific points in this space. The classification consist
of monitoring how much close Vn[t] is to the synergies.
The idea comes from probes monitoring their surroundings.
The subject’s movement is then classified as the closest
synergy probe. Since the synergy probes represent the desired

movements, the value of the euclidean distance gives an
idea of how good is the subject’s movement. Similar to the
stability value, we used different colors to represent different
synergies. The quality was represented using transparency.
A movement is invisible when the distance is more than 0.5
from all synergies, and it is completely opaque when the
distance to one synergy is 0.0. The values to control the
transparency were decided empirically based on the results
of the experiments.

III. RESULTS

We evaluated the ability of the system to show on-
line balance information together with the classification of
the movements. The example video can be available at
https://youtu.be/jsgNSSy5gdc. It can be applica-
ble for multiple users as long as they can be tracked with
Kinect. The first half is about stability tracking and the last
half is about motion classification while both processes are
on-going simultaneously for multiple users.

The classified movements were the lateral raising of both
arms, squat, raise right/left leg, and their opposite movements
to go back to rest pose. One subject was asked to perform
the raise/lower right/left leg movements at a constant speed,
and we extracted synergy probes from the data. The other
synergies were recycled from previous experiments [10],
giving in a total of 8 synergy probes. Since a force platform
was not available during the experiments, we calculated
ZRAM using parameters from previous experiments [6].

Fig. 1 shows the online visual feedback, classification,
quality, and stability when performing squats. The ZRAM
arrow turns red when the movement is unstable, and the
body segments turn into an opaque color when the subjects
perform a movement from the classifier. The segments be-
come transparent when the subject is not doing a movement
that is part of the classifier (i.e., all Euclidean distances are
below 0.5). We could visualize that most of the instability
happened when the segments of the body are more opaque.
This change occurs in the middle of the movement, especially
when the acceleration of the CoM is high. Another case of
instability happens at the beginning of raising one leg, i.e.
when the segments change from transparent to opaque during
the raising leg movement.

Four subjects were asked to perform the movements twice
in the same order and at a comfortable speed. The classifier
detects the movements of all subjects. Fig. 2 shows the
average quality and stability for each subject and synergy
probe when the quality was above 0%. A quality of 0% rep-
resents full transparency, and 100% represents full opaque. In
general, the cases with lower stability were during squat, and
the movement the subjects found more difficult to reproduce
was lowering the right leg. Besides that, the results for
different subjects demonstrate subject specific patterns. Thus,
we can quantify how much each motion class is typical
pattern or not as the distance measure obtained by synergy
probe. Fig. 2 upper plot demonstrates the motion quality
measured by synergy probe.
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Fig. 1. Personalized balance with classification and quality of movements. (Top) Visual feedback of the subject performing a squat then returning to the
rest pose. The arrow represents the position and orientation of ZRAM. The segments appear when the subject goes down (purple) and up (orange). The
transparency represents the quality of the movement. The visual feedback also shows the MVEE (white ellipse) and CoM (blue sphere). (Bottom) Quality
and stability of the subject while performing two consecutive squats. The colors represent the same information of the (Top) visual feedback. The letters
A, B, C, D, E indicate the time of each visual feedback from left to right.

Fig. 2. Average quality (Top) and stability (Bottom) when the quality is above 0%. The black lines are the standard deviation of the data.
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It is important to highlight that the contribution of the
DoFs during a movement is not steadily constant, and
the extracted synergies are an average of that contribution.
Therefore, it does not achieve a quality close to 100%.
The Euclidean distance in synergy probe is not an absolute
motion quality. It is always about relative distance from the
template motion pattern in terms of spatiotemporal space.
Hence, the quality of the movements is useful especially for
comparative evaluation in spatiotemporal space. The detail
of synergy probe should be referred to our previous work
[10].

IV. CONCLUSION

The motion classifier through synergy probe associating
to the online visualization of personalized balance improved
to identify which movement the subject is doing during the
balance stability test. In extreme case, the balance score can
be good if there is no motion by the subject. Thus, the
balance evaluation should be always along with the motion
quality evaluation both in a quantitative manner.

The proposed system also enables to identify, for example,
if the instability happens at the beginning, in the middle, or
at the end of the movement since we can see a change in
the transparency or the color of the segments representing
the parts of the body for each motion class. The quality of
the movements based on the Euclidean distance in Synergy
Probe seems to be useful for comparison among subjects and
different sessions.

The results indicate that the subjects have their own way
to perform the same movement and that is why some can
achieve better results in one case but worse results in other
cases. However, since all where healthy subjects, they could
perform all movements with reasonable quality. Previously, it
was not possible to verify what happens when the movement
is unstable but it could be potentially different from the
desired movements. With motion quality index along with
stability, we can now evaluate quantitatively, on whether the
subject is properly making the supposed motion to take.
Then, while knowing the motion intensity, we can properly
evaluate the balance stability with the proposed system.

In the future, we plan to use the system with impaired
people and analyze the difference from unimpaired people
and their quantitative improvements during rehabilitation.
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