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Abstract— In this work, we proposed and validated a hybrid
learning pipeline for automated diagnosis of first-episode
schizophrenia (FES) utilizing T1-weighted images. Amygdalar
and hippocampal shape abnormalities in FES have been
observed in previous studies. In this work, we jointly made
use of two types of features, together with advanced machine
learning techniques, for an automated discrimination of FES
and healthy control (96 versus 102). Specifically, we first
employed a ResNet34 model to extract convolutional neural
network (CNN) features. We then combined these CNN
features with shape features of the bilateral hippocampi and
the bilateral amygdalas, before being inputted to advanced
classification algorithms such as the Gradient Boosting
Decision Tree (GBDT) for classifying between FES and healthy
control. Shape features were represented using log Jacobian
determinants, through a well-established statistical shape
analysis pipeline. When combining CNN with hippocampal
shape, the best results came from utilizing GBDT as the
classifier, with an overall accuracy of 75.15%, a sensitivity
of 69.35%, a specificity of 80.19%, an F1 of 72.16%, and an
AUC of 79.68%. When combing CNN and amygdalar shape,
the best results came from utilizing Bagging as the classifier,
with an overall accuracy of 74.39%, a sensitivity of 67.93%, a
specificity of 80%, an F1 of 71.11%, and an AUC of 80.98%.
Compared with using each single set of features, either CNN
or shape, significant improvements have been observed, in
terms of FES discrimination. To the best of our knowledge,
this is the first work that has tried to combine CNN features
and hippocampal/amygdalar shape features for automated
FES identification.

Clinical relevance— This work provides a practical method
for automated diagnosis of FES based on T1-weighted images.

I. INTRODUCTION

Schizophrenia is a chronic and severe mental disorder
affecting about 20 million people worldwide [1]. It is
characterized by positive symptoms such as delusions and
hallucinations and negative symptoms such as blunting of
affect and passive withdrawal [2]. First-episode schizophre-
nia (FES) represents an early stage in the neuropathology
of schizophrenia. It typically occurs in the late teenage
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years or the early twenties. Studying FES patients pro-
vides an opportunity to better understand the progressive
changes in schizophrenia and identify potential biomarkers
for schizophrenia diagnosis.

Previous structural magnetic resonance imaging (MRI)
studies have reported morphometric abnormalities of the
bilateral amygdalas and hippocampi in FES [3], [4]. For ex-
ample, Narr et al. observed significant bilateral hippocampal
volume reductions in FES compared to healthy control (HC)
counterparts [3]. In one of our previous studies, we found
significant global volume reductions and localized surface at-
rophies in the bilateral amygdalas and hippocampi [4]. These
studies may indicate that the morphometric abnormalities of
the bilateral hippocampi and amygdalas have the capability
of distinguishing FES from HC, especially the shape features
since they are more sophisticated and refined than volume
features and have revealed superior discrimination ability in
other types of brain diseases [5], [6].

On the other hand, convolutional neural networks (CNNs)
have recently shown great potential in automated diagnoses
of brain disorders, such as Alzheimer’s disease, Parkinson’s
disease, autism spectrum disorder, and schizophrenia [7].
CNN can automatically learn feature representation through
a backpropagation algorithm. ResNet [8], an efficient CNN
architecture, has been widely employed as a backbone
for feature extraction in many recently proposed networks.
Utilizing ResNet as a feature extractor may help identify
potentially useful features that are difficult to be manually-
crafted.

The aim of this study is two-fold. Firstly, we aim to in-
vestigate the power of the hippocampal and amygdalar shape
(quantitatively represented by log Jacobian determinants) in
both hemispheres in discriminating between FES and HC.
Secondly, we hypothesize that adding CNN generated fea-
tures could enhance the classification performance. Extensive
validation experiments are conducted.

II. MATERIALS AND METHODS
A. Subjects and MRI data acquisition

A total of 198 subjects participated in this study, includ-
ing 92 FES subjects (50 females, 42 males, average age:
22.40 ± 5.59 years) and 106 HC subjects (47 females, 59
males, average age: 23.68 ± 4.04 years). Exclusion criteria
included: (1) history of substance abuse or dependence; (2)
significant systemic or neurologic illness as assessed by clin-
ical evaluations and medical records; (3) comorbid affective
illness or schizoaffective disorder. This study was approved
by the First Affiliated Hospital of Shenzhen University Ethics
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Fig. 1. The entire procedure of our proposed hybrid learning pipeline.

Committee, and was in accordance with the Declaration of
Helsinki. Written informed consents were obtained from all
participants or family relatives before participation.

Structural MR images were acquired using a 3T scanner
(Trio Tim; Siemens, Erlangen, German). All T1-weighted
images were acquired using a magnetization prepared-rapid
acquisition gradient echo (MPRAGE) sequence with the
following parameters: repetition time = 13.40 ms, echo time
= 4.6 ms, flip angle = 20◦, field of view = 256 × 256,
and voxel size = 1 × 1 × 1 mm3. Each MR image was
visually inspected by one experienced neuroradiologist for
data quality control.

B. Image preprocessing

All T1-weighted images in this study were processed using
a specific pipeline, including bias correction, denoising,
affine registration to the Colin27 MNI template [9], skull
stripping. All operations were performed using the FSL
package [10].

C. Volumetric segmentation

For segmenting the bilateral amygdalas and hippocampi,
each T1-weighted image was processed with a validated
fully automated segmentation pipeline known as braingps
(hosted on www.mricloud.org), which is built on the multi-
atlas likelihood fusion (MALF) algorithm [11]. Since MALF
depends on multiple atlases, 45 atlases were used in this
study. Each atlas had previously been segmented into a total
of 289 regions, including our four structures of interest (i.e.,
left and right amygdala and hippocampus). More detailed
information about the label definitions and the atlas set can
be found elsewhere [12].

D. Shape processing

After segmenting out the left and right amygdala and
hippocampus, a well-established shape analysis pipeline was
used to extract the shape descriptor of each structure [13].
This pipeline had been successfully applied to analyzing
the bilateral hippocampi and amygdalas in various brain
disorders, e.g., Alzheimer’s disease [5] and Wilson’s disease

[14]. In brief, we firstly created a triangulated surface by
contouring the boundary of each 3D segmentation of each
structure with sufficient smoothness and correct anatomical
topology [13]. To alleviate the potential limitation of using
a single surface as the template surface, we then generated a
common structure-specific template surface from all 198 sub-
jects via a Bayesian template estimation algorithm [15]. We
subsequently applied the large deformation diffeomorphic
metric mapping (LDDMM) surface algorithm [16] to obtain
a diffeomorphism from the template to each subject surface
for each structure of interest. The log Jacobian determinant
of each diffeomorphism was then obtained at each vertex
of the template surface for each of the four structures of
interest. This diffeomorphic marker quantifies the surface
deformation, namely the ratio of each subject surface to the
template surface in respect of vertex-wise surface areas, and
was used as our shape features in subsequent discriminant
analyses.

E. Two-stage hybrid learning

As shown in Fig. 1, our proposed pipeline consists of two
stages. In the first stage, the training images were randomly
split into inner training images and validation images at a
ratio of 3:1. A ResNet model was trained using the inner
training images, and was evaluated using the inner validation
images. For generating a more generalized model, online data
augmentation was employed, including random cropping to
a size of 172 × 206 × 172 and random scaling in the
[0.95, 1.05] range. Moreover, early stopping was applied to
alleviate the overfitting problem. In other words, the training
process would stop when the validation loss did not decline
in 25 epochs. The optimal network parameters would be
saved. In the second stage, the ResNet model was initialized
with the above parameters, and was then used to extract
CNN features from training images and test images. This
model here was only used for extracting CNN features. The
shape features (the vertex-wise log Jacobian determinants)
of training images and test images were extracted using the
aforementioned LDDMM surface pipeline. These two types
of features were extracted separately and then concatenated
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TABLE I
ALL CLASSIFICATION RESULTS OF RESNET MODELS (MEAN AND STANDARD DEVIATIONS)

Model Accuracy/% Sensitivity/% Specificity/% F1/% AUC/%

ResNet18 70.30 ± 2.38 73.15 ± 3.51 67.83 ± 3.76 69.59 ± 2.40 75.71 ± 1.51
ResNet34 69.14 ± 1.38 70.11 ± 3.55 68.30 ± 4.83 67.84 ± 1.11 72.02 ± 1.40
ResNet50 71.06 ± 1.96 70.76 ± 5.66 71.32 ± 3.68 69.34 ± 2.98 74.10 ± 2.01

Values expressed as mean ± standard deviation. Bold indicates the best performance. AUC, area
under the receiver operating characteristic curve.

TABLE II
A SUMMARY OF ALL CLASSIFICATION RESULTS (MEAN AND STANDARD DEVIATIONS)

Shape feature CNN feature Classifier Accuracy/% Sensitivity/% Specificity/% F1/% AUC/%

Amygdala None Bagging 71.31 ± 2.12 67.07 ± 3.19 75.00 ± 2.16 68.46 ± 2.53 77.64 ± 1.37
GBDT 73.23 ± 2.38 67.50 ± 2.97 78.21 ± 2.81 70.08 ± 2.66 78.60 ± 2.05

Hippocampus None Bagging 67.12 ± 2.10 61.09 ± 3.29 72.36 ± 2.46 63.30 ± 2.57 71.83 ± 1.69
GBDT 66.72 ± 1.54 60.43 ± 3.08 72.17 ± 1.85 62.76 ± 2.14 70.98 ± 2.19

None

ResNet18 Bagging 71.87 ± 2.37 64.13 ± 3.07 78.58 ± 3.43 67.93 ± 2.65 75.75 ± 2.48
GBDT 70.45 ± 2.16 64.24 ± 2.85 75.85 ± 3.13 66.89 ± 2.37 74.03 ± 2.38

ResNet34 Bagging 72.88 ± 2.03 63.91 ± 3.43 80.66 ± 2.93 68.63 ± 2.49 75.56 ± 2.55
GBDT 70.25 ± 2.58 62.83 ± 3.94 76.70 ± 3.35 66.22 ± 3.13 74.77 ± 3.40

ResNet50 Bagging 72.78 ± 1.70 65.11 ± 2.85 79.43 ± 2.06 68.95 ± 2.14 75.23 ± 1.75
GBDT 71.41 ± 1.75 65.76 ± 2.89 76.32 ± 2.55 68.11 ± 2.05 74.68 ± 2.47

Amygdala

ResNet18 Bagging 71.87 ± 2.57 64.24 ± 3.59 78.49 ± 3.65 67.96 ± 2.92 79.91 ± 2.06
GBDT 71.87 ± 1.94 65.00 ± 4.06 77.83 ± 2.84 68.18 ± 2.58 77.60 ± 2.37

ResNet34 Bagging 74.39 ± 1.72 67.93 ± 3.31 80.00 ± 1.57 71.11 ± 2.27 80.98 ± 1.89
GBDT 72.58 ± 2.24 66.52 ± 4.83 77.83 ± 1.42 69.19 ± 3.16 79.47 ± 2.48

ResNet50 Bagging 72.07 ± 1.71 67.07 ± 2.75 76.42 ± 2.80 69.04 ± 1.96 79.65 ± 1.31
GBDT 70.96 ± 1.16 66.85 ± 3.12 74.53 ± 2.92 68.12 ± 1.52 77.83 ± 1.40

Hippocampus

ResNet18 Bagging 73.64 ± 1.87 66.96 ± 3.74 79.43 ± 3.07 70.20 ± 2.38 77.99 ± 2.37
GBDT 73.59 ± 2.56 68.59 ± 3.45 77.92 ± 4.29 70.70 ± 2.65 77.63 ± 2.79

ResNet34 Bagging 74.65 ± 1.66 67.72 ± 3.04 80.66 ± 2.57 71.26 ± 2.01 79.02 ± 1.23
GBDT 75.15 ± 0.90 69.35 ± 2.22 80.19 ± 2.27 72.16 ± 1.06 79.68 ± 1.25

ResNet50 Bagging 72.68 ± 1.96 66.74 ± 3.04 77.83 ± 2.57 69.40 ± 2.34 78.55 ± 1.85
GBDT 72.32 ± 2.42 67.61 ± 4.06 76.42 ± 4.74 69.40 ± 2.55 78.12 ± 2.23

Amygdala +
Hippocampus

ResNet18 Bagging 73.23 ± 2.42 66.63 ± 4.27 78.96 ± 2.98 69.77 ± 3.08 80.64 ± 2.28
GBDT 73.54 ± 2.32 68.15 ± 3.67 78.21 ± 3.71 70.51 ± 2.63 80.39 ± 2.18

ResNet34 Bagging 74.60 ± 1.86 67.83 ± 3.00 80.47 ± 2.83 71.26 ± 2.16 81.77 ± 1.74
GBDT 74.75 ± 1.60 70.11 ± 2.97 78.77 ± 3.46 72.06 ± 1.69 81.91 ± 1.90

ResNet50 Bagging 73.18 ± 1.45 66.96 ± 3.08 78.58 ± 1.89 69.85 ± 2.03 80.40 ± 1.77
GBDT 73.23 ± 1.66 69.46 ± 4.05 76.51 ± 2.88 70.64 ± 2.30 80.65 ± 2.07

Values expressed as mean ± standard deviation. Bold indicates the best performance. AUC, area under the receiver operating
characteristic curve; CNN, convolutional neural network; GBDT, Gradient Boosting Decision Tree.

before classification. Please note that both training features
and test features were normalized using z-score standard-
ization. We then performed inner cross-validation on the
training data to exhaustly search the optimal set of hyper-
parameters from pre-defined parameter candidates using grid
search strategy. The parameters of the highest accuracy were
chosen to be the optimal set of hyper-parameters, which
would be applied in the training process later. After the
training process, we evaluated the trained model using the
test data.

F. Cross-validation

In our experiments, we repeated stratified 5-fold cross-
validation for 10 times. The data was randomly split into

5 folds at each time so that the partition results vary from
time to time. Within each iteration, four folds were used for
training and one fold for test. The proposed pipeline was
repeated 5 times, and cross-validation results of the 5 folds
were calculated. Lastly, the mean and standard deviation,
averaged across the 10 times, were obtained.

III. EXPERIMENTS AND RESULTS
A. Experimental settings

To demonstrate the superiority of our proposed pipeline,
we compared the classification performance of utilizing
shape features, CNN features, and a combination of the two
types of features. In our experiments, we also compared the
classification power of features generated by three variants
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of ResNet, namely ResNet18, ResNet34, and ResNet50.
Moreover, two classifiers were evaluated, namely Bagging
[17] and Gradient Boosting Decision Tree (GBDT) [18].
Accuracy, sensitivity, specificity, F1, and area under the
receiver operating characteristic curve (AUC) were used
as metrics to evaluate the classification performance. All
experiments in this study were performed using scikit-learn
[19] and PyTorch packages.

B. Cross-validation results

Table I shows the results of all ResNet experiments.
Clearly, ResNet50 achieved the highest overall accuracy of
71.06%. This may be because it has a relatively stronger
representation ability than other models. However, generally
speaking, ResNet models alone did not provide satisfactory
results, which might be due to the limited data size.

The results of all hybrid learning experiments are shown in
Table II. When combined with the amygdalar shape features,
the hippocampal shape features, or a combination of the two,
ResNet34 consistently worked the best compared to the other
two ResNet variants. With GBDT being the classifier, an
overall accuracy of 75.15%, a sensitivity of 69.35%, a speci-
ficity of 80.19%, an F1 of 72.16%, and an AUC of 79.68%
were achieved when using a combination of hippocampal
shape features and ResNet34 features. With Bagging being
the classifier, an overall accuracy of 74.39%, a sensitivity
of 67.93%, a specificity of 80%, an F1 of 71.11%, and an
AUC of 80.98% were obtained when using a combination
of amygdalar shape features and ResNet34 features. With
GBDT being the classifier, an overall accuracy of 74.75%,
a sensitivity of 70.11%, a specificity of 78.77%, an F1 of
72.06%, and an AUC of 81.91% were obtained when using
a combination of amygdalar shape features, hippocampal
shape features and ResNet34 features. Compared with using
each single set of features, significant improvements were
observed, especially in terms of accuracy and AUC. This
clearly indicates that CNN features and shape features of
the bilateral hippocampi as well as the bilateral amygdalas
provide complementary information for each other, in terms
of FES discrimination.

There are several other interesting findings that are worthy
of mentioning. Firstly, compared with using the hippocampal
shape features only, adding ResNet50 features did not im-
prove the classification performance as much as ResNet34
features did. We conjecture a plausible reason is that the
dimension of ResNet50 features (2048) was 4 times of
that of ResNet34 features (512), and is likely to induce
overfitting. Secondly, in some experimental settings, adding
ResNet features did not improve the classification perfor-
mance compared with using the amygdalar shape features
only, which probably because these two types of features
shared redundant information.

IV. CONCLUSIONS

In this study, we proposed and validated a hybrid learning
pipeline for automated classification of FES. Our experi-
ments demonstrate that a combination of hippocampal or

amygdalar shape features and ResNet34-generated features
could improve the FES identification performance. A po-
tential limitation of this work is that the ResNet model
was frozen after the first stage and could not be updated
during the second stage. In the future, we aim to design
a deep hybrid learning pipeline, which can backpropagate
and update the parameters of the CNN module. Another
limitation is that we have not applied our models in clinical
practice, which will be one of our future endeavors.
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