
  

 

Abstract— Alzheimer’s disease (AD) is the most prevalent 

neurodegenerative disorder and considerably determined by 

genetic factors. Fluorodeoxyglucose positron emission 

tomography (FDG-PET) can reflect the functional state of 

glucose metabolism in the brain, and radiomic features of 

FDG-PET were considered as important imaging markers in 

AD. However, radiomic features are not highly interpretable, 

especially lack of explanation of underlying biological and 

molecular mechanisms. Therefore, this study used 

radiogenomics analysis to explore prognostic metabolic imaging 

markers by associating radiomics features and genetic data.  In 

the study, we used the FDG-PET images and genotype data of 

389 subjects (Cohort B） enrolled in the ADNI, including 109 

AD, 134 healthy controls (HCs), 72 MCI non-converters 

(MCI-nc) and 74 MCI converters (MCI-c). Firstly, we 

performed a Genome-wide association study (GWAS) on the 

genotype data of 998 subjects (Cohort A), including 632 AD and 

366 HCs after quality control (QC) steps to identify 

susceptibility loci as the gene features. Secondly, radiomics 

features were extracted from the preprocessed PET images. 

Thirdly, two-sample t-test, rank sum test and F-score were 

regarded as the feature selection step to select effective radiomic 

features. Fourthly, a support vector machine (SVM) was used to 

test the ability of the radiomic features to classify HCs, MCI and 

AD patients. Finally, we performed the Spearman correlation 

analysis on the genetic data and radiomic features. As a result, 

we identified rs429358 and rs2075650 as genome-wide 

significant signals. The radiomic approach achieved good 

classification abilities. Two prognostic FDG-PET radiomic 

features in the amygdala were proven to be correlated with the 

genetic data.  

Keywords— Imaging genomics, Fluorodeoxyglucose positron 

emission tomography, Genome-wide association studies 

(GWAS) 

INTRODUCTION 

Alzheimer's disease (AD) is a kind of nervous system 
degenerative disease characterized by cognitive dysfunction 
associated with age, so far affecting millions of people 
worldwide. AD is considerably determined by genetic factors. 
Therefore, elucidating the genetic architecture of AD-related 
phenotypic traits, ideally those linked to the underlying 
disease process, holds great promise in gaining deeper insights 
into the genetic basis of AD and in developing better clinical 
prediction models. 
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Fluorodeoxyglucose positron emission tomography 
(FDG-PET) is a recognized neuroimaging marker of 
functional degeneration. It can be used to increase the 
certainty of the pathophysiological process of AD in research 
and can also be used as a clinical diagnostic tool. The 
relationship between AD and glucose metabolism has always 
been a concern because brain activity is inseparable from the 
effects of glucose. Further, researches[1] have shown that 
radiomic features in cortical glucose metabolism can not only 
assess early changes in cognitive function, but also detect 
changes in disease progression. However, radiomic features 
are not highly interpretable, especially lack of explanation of 
underlying biological and molecular mechanisms. Little is 
known about the correlation between glucose metabolism and 
heredity. 

Radiogenomics is an emerging field that holds great 
promise for a system biology of the brain to better understand 
complex neurobiological systems, from genetic determinants 
to cellular processes to the complex interplay of brain 
structure, function, behavior and cognition[2]. It can help 
physicians to gain insights into the underlying pathologic 
processes of AD. 

Therefore, in this study, we aimed to explore prognostic 
radiomic markers for AD by associating radiomics features 
and Genetic data. 

TABLE I.  THE DEMOGRAPHIC INFORMATION OF DATA 

Cohort A 

 AD (n = 632) HC (n = 366) 
Gender(M/F) 368/264 177/189 

Age 74.5±7.4 74.0±5.7 

Education 15.5±2.9 16.4±2.7 

MMSE 22.3±4.0 29.0±1.1 

 Cohort B  P value (Two sample t-test) 

 AD 

(n=1

09) 

HC 

(n = 

134) 

MCI (n = 146) AD 

vs 

H

C 

MCI 

vs 

HC 

AD 

vs 

MCI 

MC

I-c 

vs 

MC

I-n

c 

MCI-

c (n = 

74) 

MCI- 

nc (n 

= 72) 

Gender 

(M/F) 

69/40a

c 

68/66a

b 

49/25d 45/27d - - - - 

Age 74.2

±8.5 

74.7

±6.3 

74.6

±6.9 

72.6

±6.8 

0.5

8 

0.17 0.57 0.09 

Education 15.8

±2.8 

16.4

±2.5 

15.9

±2.6 

16.1

±2.8 

0.1

1 

0.19 0.70 0.74 

MMSE 22.8

±3.0 
ac 

29.1

±
1.1ab 

26.5

±2.2d 

28.4

±1.6d 

<0.

001

, 

<0.00

1, 

<0.00

1 

<0.0

01 

Note: MCI-c = MCI-converters, MCI-nc = MCI non-converters, MMSE = 
Mini Mental State Examination, Age, Education, MMSE are given as mean ±
standard deviation.  

0.05a p 
: AD vs HC, 

0.05b p 
: MCI vs HC, 

0.05c p 
: AD vs MCI,

p 0.05d 
: MCI-c vs MCI-nc. 
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MATERIALS AND METHODS 

A. Participants 

Data used in this study were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database (adni.loni.ucla.edu). One goal of ADNI has been to 
test whether serial magnetic resonance imaging (MRI), PET, 
other biological markers, and clinical and neuropsychological 
assessment can be combined to measure the progression of 
mild cognitive impairment (MCI) and early AD. For 
up-to-date information, see www.adni-info.org. The ADNI 
participants utilized for our analyses originated from ADNI1 
and ADNIGo/2. 

The genetic data for GWAS analysis was based on 998 
subjects (Cohort A) enrolled in the ADNI, including 632 AD 
and 366 HCs. Then, 389 subjects (Cohort B) who own both 
genotype data and FDG-PET images were involved, including 
109 AD, 134 healthy controls (HCs), 72 MCI non-converters 
(MCI-nc) and 74 MCI converters (MCI-c). As shown in Table 
1, a chi-squared test was conducted to evaluate the gender 
effect, and analysis of variance (ANOVA) with Bonferroni 
correction and two sample t-test were used to evaluate the 
statistical differences in the age, MMSE, and Education.  

B. Experimental framework 

As shown in Fig. 1, the framework of the study consists of 
four parts. First, quality control procedures were performed to 
exclude unsatisfactory genotype data and the FDG-PET 
images ought to be preprocessed for further study. Next, we 
performed the genome-wide association studies (GWAS) 
analysis on the genotype data to identify susceptibility loci in 
AD. Then, some typical radiomics features extracted from 
FDG-PET were selected with two-sample t-test, rank sum test 
and F-score. After that, the support vector machine (SVM) 
classifiers were applied to verify the diagnostic capabilities of 
the features selected. Finally, we conducted the Spearman 
correlation analysis on the genetics data and radiomics 
features. 
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Figure 1. The framework of the study 

C. Data preprocessing 

The genotype data of the ADNI samples was performed 
using the Illumina 610-Quad BeadChip (Illumina, Inc., San 
Diego, CA, USA). The APOE genotype is an established risk 
factor in AD research[3]. Therefore, we used the APOE 
ε2/ε3/ε4 status information from the ADNI clinical database 
for each participant. Using the PLINK software package 
(http://pngu.mgh.harvard.edu/~purcell/plink/), release v1.9, 
the following quality control (QC) steps were performed on 
these genotype data. The QC criteria for the SNP data include 
(1) call rate per SNP≥ 90%, call rate per participant ≥ 90%, 
(2) gender check, (3) minor allele frequency (MAF) ≥ 5%, 
and (4) Hardy–Weinberg equilibrium test of p≤ 10−6 , (5) 
sibling pair identification, (6) population stratification.  

Each FDG-PET image was preprocessed with Statistical 
Parametric Mapping V.12 (SPM12; 
https://www.fil.ion.ucl.ac.                                                                     
uk/spm/software/spm12)software package. Firstly, linear and 
nonlinear 3D transformations were used to normalize the scan 
space of each subject into the Montreal Neurological Institute 
(MNI) space. Then, the spatially normalized PET images were 
smoothed in three-dimensional space using an 8 mm full width 
at half maximum (FWHM) Gaussian kernel. Finally, taking 
account of the difference of FDG absorption of each 
individual, the smoothed images were normalized to a range 
of 0 to 255. 

D. GWAS analysis 

GWAS has been emerged as a popular tool to identify 
genetic variants that are associated with disease risk. The 
standard analysis of a case-control GWAS involves assessing 
the association between each individual genotyped SNP and 
disease risk[4]. A Manhattan plot and a quantile-quantile (Q–
Q) plot were used to visualize GWAS results. All association 
results surviving the significance threshold of 𝑝 < 3.78 ×
10−7 (i.e., 0.05/132,214 markers) were saved and prepared for 
additional pattern analysis. 

E. Radiomic feature extraction  

In this study, the radiomics tool developed by Vallieres4 
(https://github.com/mvallieres/radiomics) was used to exact 
features[5]. It has previously been proved that the extracted 
features can be used for the prediction and diagnosis of AD[6]. 
The features we used included the global characteristics, 
texture matrices features and standard uptake value (SUV) 
features. Table 2 provides the concreted feature names. 
Wavelet bandpass filtering was carried out by applying 
different weights [low (L) and high (H)] to bandpass 
sub-bands (LHL, LHH, LLH, HLL, HHL and HLH) of the 
ROIs, compared with low and high-frequency sub-bands 
(LLL and HHH) in the wavelet domain. The ratio of the 

weight was defined by λ, and the values of λ were 1/2, 2/3, 

1, 3/2 and 2. The number of gray levels was selected as 32 and 
64. With the different choices of bandpass sub-bands and 
quantized gray levels, 470 features were extracted from each 
brain region in total. 

TABLE II.  EXTRACTED RADIOMIC FEATURES 
Feature type Feature name Feature type Feature name 

Global Variance  Run-length variance (RLV) 

Skewness gray-level size 

zone matrix 

(GLSZM) 

Small zone emphasis (SZE) 

Kurtosis Large zone emphasis (LZE) 

gray-level 

co-occurrence 

Energy Gray-level nonuniformity 

(GLN) 
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matrix 

(GLCM) 

Contrast Zone-size nonuniformity 

(ZSN) 

Correlation Zone percentage (ZP) 

Homogeneity Low-gray-level zone 

emphasis (LGZE) 

Variance High-gray-level zone 

emphasis (HGZE) 

Sum average Small zone low-gray-level 

emphasis (SZLGE) 

Entropy Small zone high-gray-level 

emphasis (SZHGE) 

Auto correlation Large zone low-gray-level 

emphasis (LZLGE) 

Dissimilarity Large zone high-gray-level 

emphasis (LZHGE) 

gray-level 

run-length 

matrix 

(GLRLM) 

Short-run emphasis 

(SRE) 

Gray-level variance (GLV) 

Long-run emphasis 

(LRE) 

Zone-size variance (ZSV) 

Gray-level 

nonuniformity 

(GLN) 

neighborhood 

gray-tone 

difference 

matrix 

(NGTDM) 

Coarseness 

Run-length 

nonuniformity 

(RLN) 

Contrast 

Run percentage 

(RP) 

Busyness 

Low-gray-level run 

emphasis (LGRE) 

Complexity 

High-gray-level run 

emphasis (HGRE) 

Strength 

Short-run 

low-gray-level 

emphasis (SRLGE) 

SUV Maximum SUV (SUVmax)  

Short-run high 

gray-level emphasis 

(SRHGE) 

Peak SUV (SUVpeak) 

Long-run 

low-gray-level 

emphasis (LRLGE) 

Mean SUV （SUVmean） 

Long-run 

high-gray-level 

emphasis (LRHGE) 

Area under the curve of the 

cumulative SUV volume 

histogram （AUC-CSH） 

Gray-level variance 

(GLV) 

  

F. Radiomic feature selection 

Feature selection helped to speed up the classification 
process by decreasing computational time and increases the 
performance of classification accuracy. 

Firstly, we performed the significance test of difference 
(P<0.01) to select features that were effective for 
classification. Two-sample t-test was applied to the features 
that obeyed normal distribution and generality variances are 
equal. The rank sum test was utilized for the remaining 
features.  

After that, F-score was employed for obtaining subset 
features. F-score is a simple feature selection filter method by 
evaluating the discrimination of two sets of real numbers. 

Given training vectors kX
, k=1,2,… ,m, if the number of 

positive and negative instances are n  and n , respectively, 
then the F-score of the ith feature is defined as[7]: 

( ) ( )
2 2

( ) ( )
( ) 2 ( ) 2
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1 1
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(i)

1 1
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1 1

i i i i

n n

k i i k i i

k k

x x x x
F

x x x x
n n

 

 

 
 

  

  


  
 
 

Where ix
,

( )

ix


and

( )

ix


are the averages of the ith feature of 

the whole, positive, and negative datasets. 

( )

,k ix 

 is the ith 

feature of the kth positive instance and 

( )

,k ix 

 is the ith feature 
of the kth negative instance.  

In addition, the number of occurrences of extracted 
characteristics was measured. The top 20 characteristics with 
the highest number of appearances were recorded for further 
research. 

G. Classification   

To verify the diagnostic capabilities of the feature-set 
selected above, we performed four SVM classification 
experiments, including AD versus HCs, MCI versus HCs, AD 
versus MCI and MCI-c versus MCI-nc. SVM is a supervised 
learning method, which works by finding a hyperplane that 
best separates two data groups[7]. The SVM classifiers were 
trained by training data in n-dimensional training space after 
which test subjects are classified according to their position in 
n-dimensional feature space. To improve the performance of 
SVM, Grid Search[8] was applied to optimize the SVM 
parameters in this study. To evaluate the classification 
performance, we conducted 5-fold cross-validation 200 times 
for each SVM classification. In addition, we performed 
comparative trials. A clinical model including age, gender, 
education and MMSE score was also developed and compared 
to the PET imaging model, as well as the combined model of 
clinical and imaging information.  

H. Spearman correlation analysis 

Spearman correlation was applied as a criterion to estimate 
whether genes had a correlation with the imaging features of 
high frequency. Among all the Gene indicators, theta proved 
to have the most direct relationship with SNP changes. The 
theta value represents the normalized theta value of an SNP of 
the sample. Therefore, we chose theta values as the Genetic 
features. Finally, the high-frequency radiomic features were 
selected to conduct correlation analysis with gene features. 

I．Statistical analysis 

Demographic characteristics were compared based on 
two-sample t test or the chi-square t test. All statistical 
analyses were performed in SPSS Version 22.0 software 
(SPSS Inc., Chicago, IL). All P value < 0.05 was considered 
significant. 

RESULTS 

A. Outcomes of GWAS analysis  

After the GWAS analysis, we observed two genome-wide 
significant signals on chromosome 19, APOE (rs429358, the 
epsilon 4 marker) and TOMM40 (rs2075650, OR=2.73, 
P=2.23E-15).  Fig. 2 showed the Manhattan and Q–Q plots of 
the GWAS analysis. 

 

Figure 2. Manhattan and Q–Q plots of genome-wide association 

study (GWAS). The horizontal lines in the Manhattan plot display the 
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cutoffs for two significant levels: blue line for 𝑝 < 10−5, and red line 

for 𝑝 < 3.78 × 10−7. Genomic inflation factor is 1.073. 

B. classification performance  

Table 3 provided the classification accuracy, sensitivity, 
specificity and area under curve (AUC) of the clinical model, 
PET imaging model and the combined model. The SVM 
classifiers using selected radiomic features could achieve 

accuracies of 92.9±0.8%, 83.7±0.6%, 87.9±1.1% and 88.0

±1.9% in AD vs HC, MCI vs HC, AD vs MCI, and MCI-c vs 

MCI-nc, respectively.  This indicated that radiomic approach 
used was stable, and achieved good classification abilities. 

TABLE III.  RESULTS OF EXPERIMENTS 

 Model ACC(%) SEN(%) SPEC(%) AUC 

AD  

vs 

HC 

Clinical 86.8±4.6 83.9±6.5 89.2±4.9 0.83±0.05 

PET 92.9±0.8 84.8±1.6 99.5±0.5 0.89±0.02 

combine 97.4±0.5 98.8±0.5 95.7±0.9 0.94±0.01 

MCI  

vs 

HC 

Clinical 69.7±1.2 64.0±1.5 76.3±1.8 0.68±0.02 

PET 83.7±0.6 69.9±1.0 98.8±0.7 0.81±0.02 

combine 84.5±0.9 96.1±1.3 74.0±1.3 0.82±0.02 

AD  

vs  

MCI 

Clinical 82.9±0.8 77.7±1.5 87.0±0.9 0.80±0.02 

PET 87.9±1.1 82.9±1.6 91.8±1.4 0.84±0.02 

combine 94.2±0.6 95.5±0.8 92.5±0.9 0.91±0.01 

MCI-c 

vs 

MCI-nc 

Clinical 69.7±1.6 63.8±2.3 76.5±2.4 0.65±0.03 

PET 88.0±1.9 95.0±2.7 81.2±2.8 0.81±0.03 

combine 88.5±1.8 83.0±2.5 94.1±2.4 0.82±0.02 

Note: the explicit results are given as mean ± standard deviation. 

C. Results of correlation analysis, 

The possible association of radiomic features with genes 
was explored based on the Spearman correlation. Setting the 
threshold for P<0.05 after FDR adjusting, two radiomic 
features with different correlation coefficients R were proved 
to be correlated to gene features. As shown in Table 4, 

coarseness of the amygdala with different λ values were 

proved to be associated with the significant SNP, rs2075650. 
Coarseness represented the level of spatial change rate of 
intensity. Therefore, a high value of coarseness meant that the 
gray level difference between the groups was small. 

TABLE IV.  RESULTS OF CORRELATION ANALYSIS 

ROI  feature λ R P 

Amygdala_L Coarseness 1 0.11 0.047 

Amygdala_L Coarseness 3/2 0.12 0.047 

DISCUSSION 

This study explored the Gene related metabolic imaging 
markers of AD using radiogenomics analysis. The outcomes 
of this study may help physicians to gain insights into the 
explanations of underlying biological and molecular 
mechanisms for FDG-PET radiomic features. 

A. Outcomes of GWAS analysis  

At the 𝑝 < 3.78 × 10−7significance level, two SNPs were 
identified in the GWAS analysis. As a well-established AD 
risk factor, the APOE SNP rs429358 was determined as the 
most prominent imaging genetics. Moreover, the second 
significant SNP, rs2075650 (TOMM40), supported the 

finding of TOMM40 as a gene adjacent to APOE and an 
additional contributor to AD [9]. In addition, SNPs from 
several other candidate genes showed less robust indications 
of possible association that nonetheless encourage further 
investigation. These results were consistent of previous 
studies. 

B. Results of radiomic features  

The amygdala is located in the medial temporal lobe 
region of the brain and has been implicated in emotional 
processes, survival instincts and aspects of memory, 
especially for emotional components. Amygdala is 
prominently related to AD and its progression[10] and has 
been used to assist the clinical diagnosis of AD. Studies on 
FDG-PET have demonstrated different usage patterns of 
glucose metabolism in the amygdala between AD and healthy 
control subjects. These results were also consistent with 
previous studies. 

C. Limitation  

The study is limited by several factors as below. (1) data 
we used were all from the ADNI database, which lack 
universality. The validation part using data from other sources 
needs to be studied in the future; (2) the number of samples 
participated in GWAS analysis needs to be augmented to 
obtain more significant SNPs.  

CONCLUSION 

In the study, we identified two Gene-influenced FDG-PET 

radiomic features (coarseness of the amygdala). This study 

showed that radiogenimic approach may be useful for the AD 

study. 
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