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Abstract— Millions of people around the world suffer
from Parkinson’s disease, a neurodegenerative disorder with
no remedy. Currently, the best response to interventions is
achieved when the disease is diagnosed at an early stage.
Supervised machine learning models are a common approach to
assist early diagnosis from clinical data, but their performance
is highly dependent on available example data and selected
input features. In this study, we explore 23 single photon
emission computed tomography (SPECT) image features for
the early diagnosis of Parkinson’s disease on 646 subjects. We
achieve 94 % balanced classification accuracy in independent
test data using the full feature space and show that matching
accuracy can be achieved with only eight features, including
original features introduced in this study. All the presented
features can be generated using a routinely available clinical
software and are therefore straightforward to extract and apply.

Clinical relevance— This work evaluates SPECT image
features available from routinely used clinical software to
support early diagnosis of Parkinson’s disease and establishes
high accuracy results.

I. INTRODUCTION

Parkinson’s disease (PD) is a devastating neurodegener-
ative disease with over 6 million diagnosed cases world-
wide [1]. In the United States alone, it induces over $50 bil-
lion annual costs [2]. The gradually progressive symptoms
can include slowness of movement (bradykinesia), tremor,
muscle stiffness, problems with balance and speech, and
autonomic dysfunction along with other symptoms [3]. With
no existing cure for PD, early diagnosis and monitoring of
the disease severity is essential in order to provide correct,
timely interventions and more effective treatment.

Neuroimaging serves as an ancillary diagnostic tool for
differential diagnosis of PD [4]. Among different imaging
techniques, single photon emission computed tomography
(SPECT) with a dopamine-transporter (DAT) binding tracer
such as DaTSCAN (Ioflupane I-123) stands out as the most
sensitive method for detecting early PD [4]. In SPECT, the
radioactive tracer is injected into the bloodstream where it
binds to active dopaminergic neurons. Specifically, DAT-
SPECT provides information on the presynaptic dopamin-
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ergic transporters in the striatum, and this may be used to
successfully discriminate between cases of early stage PD
and subjects without striatal dopaminergic deficiency (e.g.
healthy controls and patients with essential tremor) [5], [6].

Machine learning (ML) based decision support can pro-
vide objectivity and increased accuracy for diagnostics. Es-
pecially when the diagnosis relies on the visual inspection of
medical images, ML can help physicians save time while im-
proving both consistency and interobserver agreement, which
in turn may improve the patient outcome. ML solutions have
reached equal or even higher accuracy as compared to medi-
cal experts in diagnosing diseases from images [7], [8]. Thus,
early diagnosis of PD from SPECT scans may be boosted
with ML, specifically through supervised classification.

Supervised ML methods are able to yield multivariate
classification models from labelled databases to distinguish
patients with PD from healthy controls. Moreover, many
conventional ML methods are explainable and interpretable,
enabling the physicians to review the justification of the sug-
gested diagnosis. Yet, the accuracy of such methods is highly
dependent on the selected input features and their capacity
for the classification task: they need to describe useful and
relevant information to facilitate reliable classification.

In this study, we evaluate the potential of 23 SPECT image
features for early diagnosis of PD. Fourteen features are
obtained by processing the DAT-SPECT image with the rou-
tinely used clinical DaTQUANT software (GE Healthcare,
Chicago, IL, USA) and the other 9 features are derived from
those. We explore several ML classifiers to obtain the best
prediction model and examine the importance of the features
to gain insights for future work. We employ two distinct
databases (276 and 370 subjects, 646 in total), using one for
training and the other for testing, to enable reliable evaluation
of both classification performance and feature importance.

Preceding studies have demonstrated promising results for
early detection of PD by applying ML on various diagnostic
modalities [9], [10], [11], [12]. Relevantly, Prashanth et al.
used a 548 subject database with four striatal binding ratio
(SBR) features from SPECT images [9]. They used Support
Vector Machines (SVM) and Logistic Regression (LR) for
classification, achieving an impressive 96 % accuracy. How-
ever, they used 10-fold cross validation, which may give
optimistic figures as compared to an independent test set.
Other ML based studies have also reported high accuracies
for this task but with relatively small datasets [13], [14], [15].

This study demonstrates that eight SPECT image features
are sufficient for high accuracy classification of early PD.
To the best of our knowledge, two of the features are novel,
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whereas all of them are either directly available or derived
from DaTQUANT. These features can be further studied for
early PD indicators or applied in clinical decision support.

II. MATERIALS AND METHODS
We extracted the 23 SPECT image features together with

two complementing demographic features from two distinct
databases. Using one database at a time for training and the
other for testing, we developed several supervised classifiers
to obtain the best prediction model for PD. Finally, we
evaluated feature importance and examined the classifiers
again with the most promising set of features.

A. Study cohort and data

The study data (see Table I) consists of two independent,
retrospective databases collected in distinct studies [16], [17].
The included data covers a total of 646 subjects (299 positive
for PD) from age 30 to 89 (65.6 on average, 246 females).

TABLE I
DATABASE DETAILS.

Database Subjects Females Males Age range PD cases
DB1 276 125 151 38-89 124
DB2 370 121 249 30-84 175

Database DB1 was collected by Booij et al. and consists
of three multicenter trials [16]. It contains some cases of
dementia with Lewy bodies (DLB) which results in similar
appearance of the scan but derives from a different pathology.
Thus, we consider them positive PD cases. The patients were
diagnosed by at least two clinicians in consensus in two
trials, and by one clinician in the other trial. We excluded 28
cases with uncertain diagnosis, leaving 276 SPECT images.

Database DB2 was collected by Marek et al. [17]. From
the 32-month multisite study, 195 healthy controls and
175 PD cases were randomly selected for this study. The
diagnoses for the patients were provided by one experienced
clinician at each study site.

B. Feature extraction

All included features are presented in Table II. The images
were processed using the DaTQUANT software (GE Health-
care, Chicago IL). It automatically calculates tracer uptake
as compared to the background region in the occipital cortex,
i.e., striatal binding ratio, over several striatal regions. It also
generates the putamen to caudatus uptake ratio on the right
and left sides individually, along with the uptake asymmetry
between the two sides for both caudate and putamen.

The directly available feature set was augmented by the
most affected side (i.e. lower SBR of either right or left)
of putamen and posterior putamen, and seven features,
which as far as we know are original. They exploit a
comparison to a built-in database of normal subjects, which
DaTQUANT employs to correct for normal age-related de-
cline. The comparison yields z-scores and percentage of
deviation from the mean of age-matched normal uptake.
Four of the novel features describe the number of regions

TABLE II
DEMOGRAPHIC AND SPECT IMAGE-BASED FEATURES.

Feature Availability
from DaTQUANT

Age -
Striatum, right directly available
Striatum, left directly available
Putamen, right directly available
Putamen, left directly available
Putamen, most affected side derived
Caudate, right directly available
Caudate, left directly available
Anterior putamen, right directly available
Anterior putamen, left directly available
Posterior putamen, right directly available
Posterior putamen, left directly available
Posterior putamen, most affected side derived
Putamen to caudatus ratio, right directly available
Putamen to caudatus ratio, left directly available
Caudatus asymmetry directly available
Putamen asymmetry directly available
No. of regions 1.5 SD from normal derived
No. of regions 1.6 SD from normal derived
No. of regions 1.7 SD from normal derived
No. of regions 2.0 SD from normal derived
Length of right striatum derived
Length of left striatum derived
Length of most affected striatum derived
Sex -

deviating n standard deviations (SD) from normal uptake,
where n ∈ {1.5, 1.6, 1.7, 2.0}. They count the caudate and
the anterior and posterior putamen regions where z < −n.
The remaining features describe the length of the striatum
(right, left, and the most affected side), defined as the number
of contiguous caudate segments (0 to 3) for which z > −1.6,
a threshold selected for abnormal uptake. However, as PD
tends to progress through the putamen to the caudate, the
length was set to zero if the caudate z < −1.6, even if other
parts of the ipsilateral striatum were above the threshold.

To complement the image features, we included two de-
mographic features; age and sex. The categorical variable sex
was transformed into two one-hot encoded features; female
(F), and male (M). Moreover, the features were normalized
by reducing the mean and adjusted to unit variance, to avoid
biased input weighting due to differently ranged features.

C. Supervised classification models

We studied ML methods that have been proven to be
successful in similar applications, based on their perfor-
mances and robustness: SVM, LR, linear discriminant anal-
ysis (LDA), random forest (RF), gradient boosted (GB)
regression trees, and AdaBoost (AB) [18], [19].

For SVM, we used radial basis function (RBF) kernel to
enable non-linear classification boundaries. For LR, we used
L2 regularization, which is also employed in SVMs.

D. Model validation

The hyperparameters for each classifier were optimized
by applying stratified 10-fold cross-validation in the training
data set. Subsequently, the classifiers were trained using the
full training database and tested on the held out database.
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TABLE III
CLASSIFIER (COLUMNS) PERFORMANCE (%, ROWS) WITH THE 95 % CONFIDENCE INTERVAL WHEN TRAINED ON DB1 AND TESTED ON DB2.

SVM LR LDA RF GB AB
Accuracy 93.8±2.5 93.5±2.5 83.5±3.8 94.6±2.3 94.3±2.4 94.1±2.4

Balanced accuracy 93.7±2.5 93.4±2.5 83.5±3.8 94.4±2.3 94.2±2.4 93.9±2.4
PPV 95.2±3.2 95.2±3.2 82.0±5.6 97.0±2.6 96.4±2.8 96.4±2.9
NPV 92.6±3.6 92.1±3.7 84.9±5.1 92.7±3.6 92.6±3.6 92.2±3.7

Sensitivity 91.4±4.1 90.9±4.3 83.4±5.5 91.4±4.1 91.4±4.1 90.9±4.3
Specificity 95.9±2.8 95.9±2.8 83.6±5.2 97.4±2.2 96.9±2.4 96.9±2.4

AUC 93.7±2.7 93.4±2.7 83.5±4.2 94.4±2.5 94.2±2.5 93.9±2.6

TABLE IV
CLASSIFIER (COLUMNS) PERFORMANCE (%, ROWS) WITH THE 95 % CONFIDENCE INTERVAL WHEN TRAINED ON DB2 AND TESTED ON DB1.

SVM LR LDA RF GB AB
Accuracy 94.6±2.7 89.9±3.6 92.8±3.1 93.8±2.8 91.3±3.3 90.9±3.4

Balanced accuracy 94.6±2.7 90.0±3.5 92.9±3.0 94.0±2.8 91.4±3.3 91.3±3.3
PPV 92.9±4.5 86.9±5.8 90.0±5.2 90.8±4.9 89.1±5.4 86.1±5.8
NPV 96.0±3.2 92.5±4.3 95.2±3.5 96.6±3.0 93.2±4.0 95.7±3.4

Sensitivity 96.0±3.8 91.1±5.0 94.4±4.1 96.0±3.5 91.9±4.8 95.2±3.8
Specificity 94.1±3.8 88.8±5.0 91.4±4.4 92.1±4.3 90.8±4.6 87.5±5.3

AUC 94.6±2.9 90.0±3.9 92.9±3.3 94.0±3.0 91.4±3.7 91.3±3.7

Then, the roles of the databases were switched to gain a
more realistic estimate of model generalization to new data.

The selected performance metrics are accuracy, balanced
accuracy, positive predictive value (PPV), negative predictive
value (NPV), sensitivity, specificity, and area under the
receiver operating characteristic curve (AUC). Given N test
subjects, we apply normal approximation to estimate 95 %
binomial confidence interval

p̂± 1.96
√
p̂(1− p̂)/N, (1)

for all metrics p̂ apart from AUC, whose confidence interval
is estimated using the standard error defined in [20].

E. Feature importance analysis

Feature importance is directly available for some clas-
sifiers, e.g. in the weights of LR models, or in the mean
decrease of impurity for tree-based models. However, for
some models it is more complicated to derive. Therefore,
we additionally applied univariate feature selection to assess
feature importance on a general level. Correlation analysis
using Pearson correlation coefficient was selected to further
complement the analysis. Feature importance was evaluated
within both databases individually, using the models trained
on the corresponding full database.

Univariate selection is based on univariate statistical tests
between the features and labels; the better the score, the
more important the feature. Here we used the following
scores: χ2, ANOVA F-value (linear dependency), and mutual
information (non-parametric).

III. RESULTS

A. Classification

Tables III and IV present the performance of each classifier
on the two databases. For the tree-based methods, best results
occurred at 100 decision trees. As seen in Table III, the RF

classifier reached the most promising results in generalizing
from the smaller DB1 to the samples of the larger DB2.
In contrast, training on the larger DB2, the SVM classifier
benefited from hyperparameter optimization and achieved
more promising performance in terms of most metrics (see
Table IV). Considering both training scenarios, the tree-based
RF and GB classifiers and SVM show the best results.

B. Feature importance

Fig. 1 presents feature correlations within DB1 and DB2.
The features can be divided into groups, which show low to
moderate intergroup correlation, while consisting of highly
correlated features within the group. The subset of features
describing the anatomy of the brain were highly correlated
with each other, excluding ratio-, asymmetry-, and length-
based features. Similarly, the number of abnormal regions
and length-based features showed high correlation, while
correlating moderately with the anatomy-related features.
The ratio- and asymmetry-based features on the other hand
demonstrated higher correlation with the rest of the features
in DB2 than they did in DB1. Age did not correlate signifi-
cantly with any other features in either case.

The feature importance rankings in the two training
scenarios are presented in Fig. 2. Importantly, univariate
selection and tree-based importance ranked features similarly
with respect to each other in both databases. Also LR weights
gave low importance to age and sex, while still finding some
of the same features important for classification, especially in
DB1, where LR also reached closer to the RF performance.

Interestingly, the caudate features as well as ratio- and
asymmetry-based features ranked mostly low in importance.
Furthermore, when there were three alternatives to describe
an anatomical feature (right, left, and the most affected side),
the most affected side was ranked the most important (except
by LR weights). The number of regions deviating more than
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Fig. 1. Feature correlation (absolute value) within the DB1 (left) and the DB2 (right) databases.
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Fig. 2. Feature importance within the DB1 (left) and DB2 (right) datasets. For each method, i.e. each row, the brightest yellow indicates the most important
feature while the darkest blue indicates the least important feature.
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TABLE V
CLASSIFIER (COLUMNS) PERFORMANCE (%, ROWS) WITH THE 95 %
CONFIDENCE INTERVAL USING THE REDUCED FEATURE SET ON THE

MOST PROMISING CLASSIFIERS.

SVM RF GB
Trained on DB1, tested on DB2

Accuracy 93.2±2.6 94.3±2.4 92.4±2.7
Balanced accuracy 93.2±2.6 94.1±2.4 92.3±2.7

PPV 93.6±3.7 97.0±2.6 94.5±3.5
NPV 92.9±3.6 92.2±3.7 90.7±4.0

Sensitivity 92.0±4.0 90.9±4.3 89.1±4.6
Specificity 94.4±3.2 97.4±2.2 95.4±2.9

AUC 93.2±2.7 94.1±2.5 92.3±2.9

Trained on DB2, tested on DB1
Accuracy 92.4±3.1 93.5±2.9 92.4±3.1

Balanced accuracy 92.6±3.1 93.7±2.9 92.6±3.1
PPV 88.7±5.4 90.2±5.1 89.3±5.3
NPV 95.8±3.3 96.5±3.0 95.2±3.5

Sensitivity 95.2±3.8 96.0±3.5 94.4±4.1
Specificity 90.1±4.7 91.4±4.4 90.8±4.6

AUC 92.6±3.4 93.7±3.1 92.6±3.4

1.5 SD below normal seemed the most important among
similar features, except when ranked by mutual information.

Based on these results, we coupled four of the most
important features (most affected side of both the putamen
and the posterior putamen, length of the most affected
striatum, and number of regions 1.5 SD below normal) with
four features of limited importance (caudate right and left,
caudatus asymmetry, and putamen asymmetry); the latter
showed moderate or low correlation to the most important
features and may hence efficiently contribute to discriminat-
ing between the two classes. The results achieved on the most
promising models with the reduced feature set are presented
in Table V. The results suffer only a minor decline, if any,
after including only one third of the original feature set.

IV. DISCUSSION

This study explored 23 SPECT image features, coupled
with age and sex, for early diagnosis of Parkinson’s disease.
We established 94 % balanced accuracy for classification
using random forest. Importantly, we analyzed feature im-
portance and showed similar results with only eight SPECT
image features. The partly novel features derive from the
DaTQUANT software and may thus be effortlessly repli-
cated. As compared to previous works, improved model
generalization to new data is expected due to the use of a
fully independent test set [9].

Further improvements in the prediction accuracy may be
reached via modern deep learning (DL) methods that do not
require prior feature engineering, such as convolutional neu-
ral networks (CNN), possibly coupled with other approaches,
e.g. generative adversarial networks (GAN). Yet, adaptation
of such approaches to clinical use may depend on the future
availability of explainable DL solutions and abundant data.
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