
  

 

Abstract— Brain decoding is able to make human interact 

with an external machine or robot for assisting patient’s 

rehabilitation. Brain generic object recognition ability can be 

decoded through multiple neuroimaging modalities like 

functional magnetic resonance imaging (fMRI). On the other 

hand, external machine may wrongly recognize objects due to 

distorted noisy or blurring images caused by many factors, and 

therefore deteriorate performance of brain-machine interaction. 

In order to create better machine, generalization capability of 

human brain is transferred to classifier for enhancing 

classification accuracy of distorted images. Since homology 

existing between human and machine vision has been 

demonstrated, through decoding neural activity features of 

fMRI signals into feature units of convolutional neural network 

layers, an enhanced object recognition method is proposed to 

integrate brain activity into classifier for increasing 

classification accuracy. Experimental results show that the 

proposed method is able to enhance generalization capability of 

distorted object recognition. 

I. INTRODUCTION 

Brain decoding is able to make human interact with a 
machine for assisting a patient’s rehabilitation [1] through 
monitoring brain activities with brain-machine interface 
(BMI) [2]. Through machine learning analysis, brain activities 
can be decoded using neuroimaging modalities such as 
functional magnetic resonance imaging (fMRI) and 
electroencephalography (EEG) to interpret mental states when 
people see, imagine, and dream. In human-machine 
interaction, joint human-machine cognitive system not only 
builds better performing machines [3], but also accurately 
identifies synchronous motion between human and machine 
for enabling more adept human-robot collaboration [4]. Recent 
study demonstrates that a homology exists between human and 
machine vision through hierarchies of individual areas from 
lower to higher visual cortex and the convolutional neural 
network (CNN) layers [5]. CNN has been used to study the 
human visual system from focusing on interpretable responses 
of single neurons to population-level descriptions of how 
visual information is represented and transformed for 
performing visual tasks [6].  

The relationship between brain representations and 
hierarchical structures of layers of CNN makes it possible to 
not only predict the brain states in awake and anesthetized non-
human primate resting-state functional magnetic resonance 
imaging (rsfMRI) data [7], but also transfer human knowledge 
to create better machines [8]. On the other hand, human vision 
system has strong generalization capability across a wide 
variety of input changes such as different illuminations, noise, 
and blur [9], in compared to the weak generalization ability of 
deep neural network. The difference of visual perception 
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capabilities between human and CNN makes it difficult to 
build joint perception and joint actions for the future human-
machine teaming [10]. For this reason, how to transfer 
generalization capability from human to machine is critical to 
design and create better machines.  

Horikawa et al. have found that a brain decoding model 
trained on a limited set of object categories generalizes to 
decode arbitrary object categories [5]. Beside perception, 
imagined object categorization is also achieved by imagining 
about object images using the commonality of feature-level 
representations between perception and imagery. Therefore, 
arbitrary object categories imagined by human subjects can 
also be predicted from fMRI signals in the human visual 
cortical activities [5], even if a human subject only imagines 
the object and does not percept the object images. Based on 
human fMRI signals, a brain decoder may provide the 
possibility to make intelligent machine accurately recognize 
object in natural images with different image distortions in 
unstructured environment. For example, outdoor factory 
inspection robots in the haze environment have degraded 
performance due to blurred or distorted haze images in robotic 
vision system, leading to unsatisfactory results [11]. A brain 
decoding model may assist to enhance generic object 
recognition accuracy for this type of outdoor industry systems 
with imagined haze-free images.  

In this paper, to enhance object recognition accuracy in 
distorted images, we investigate transferring the generalization 
capability of human visual system to a vision-based machine 
system with joint perception. Through a regression from brain 
signals to feature representations of distorted images in the 
pre-trained CNN model, a brain decoding model is built for 
improving classification accuracy of image distortion in 
machine vision. The remaining of the paper is structured as 
follows. Section II presents the related work about fMRI-based 
brain decoding and object recognition. The materials and 
methods are given in Section III. The experimental results and 
conclusion are presented in Sections IV and V.  

II. RELATED WORK 

A. Brain Decoding with CNN Modeling 

CNN has been used as a model of human visual system to 
gain insight and understanding about biological vision [6]. To 
decode brain activities, a decoder is trained using natural 
images, which are viewed or imagined by human subjects. 
Brain fMRI signals on visual cortex are acquired and regressed 
to CNN feature space, and then features are correlated to object 
categories [5]. The trained decoder has generalization 
capability without needing training data for zero-shot learning. 
Besides static natural images, brain is also able to represent 
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dynamic natural vision in visual cortical areas which are 
correlated to different layers of CNN [12]. Wen et al use 
AlexNet [13], a classical CNN with 8 layers stacked 
architecture, to extract hierarchical visual features from the 
video clips stimuli, and fMRI signals are directly decoded to 
represent object categories in semantic space. Furthermore, 
machine learning algorithms have improved the performance 
of decoding brain activities and outperformed the traditional 
decoding methods [15]. 

B. Improving Machine Performance with Assistance of 

Brain Decoding 

Due to strong generalization ability of human brain, brain 
imaging has been used for improving machine performance 
through decoding brain activities. For example, mind is read 
and decoded to transfer human visual capabilities to enhance 
computer vision tasks such as automated visual classification 
and allow machine to utilize human brain-based features [8, 
16]. In [17], a brain imaging classification via EEG signals is 
proposed by integrating both implicit and explicit learning 
modalities. Accuracy is improved using multimodality 
information from both brain signals and image content. Under 
the CNN-based brain decoder network, a new concept of 
“brain-media” is proposed and both the brain domain and 
visual domain are exploited to increase the adversarial learning 
accuracy [14]. However, all those methods use EEG as brain 
imaging modality which has low spatial-resolution in 
compared to other imaging modalities like fMRI, and therefore 
it is difficult to build a correspondence between visual cortical 
areas and hierarchical representations of CNN. We will use 
fMRI to improve machine vision classification accuracy of 
distorted natural images with brain generalization capability 
support. 

III. MATERIALS AND METHODS 

To transfer generalization capability of human brain to 
external machine, we used existing fMRI dataset which is 
acquired when human subjects see natural objects (e.g. car and 
coffee cup) in MR scanner. Then, as shown in Fig. 1, fMRI 
activity is used to train a decoder using training set of distorted 
images with blur and noise. The external machine (a humanoid 
robot in Fig. 1) with human brain activity decoding support is 
expected to have better ability of object recognition on 
distorted objects. 

A.  Materials 

The fMRI scan is an expensive process in compared to 
other brain imaging modalities. For this reason, it’s impossible 
to acquire millions of functional MR images, unlike cheap cost 
of natural image acquisition. We use BOLD5000 dataset [17] 
to build brain decoder. The BOLD5000 is a large-scale, slow 
event-related fMRI dataset collected on 4 subjects, who 
observed over 5000 images during 15 scanning sessions. 
Those images are extracted from Scene images [18], COCO 
dataset [19], and ImageNet dataset [20]. Total 10 regions of 
interests (ROIs) are acquired in BOLD5000 dataset and used 
to extract fMRI activities, which are parahippocampal place 
area (PPA), retrosplenial cortex (RSC), occipital place area 
(OPA), lateral occipital complex (LOC), early visual (EV) on 
left and right hemispheres, respectively. Those 5 types of ROIs 
are closely related to human visual system. In the dataset, 
BOLD signal was extracted from each voxel of 10 ROIs. We 

directly use the pre-processed BOLD signals extracted from 
those 10 ROIs for decoding brain activity. They can be 
downloaded from the OpenNeuro [30]. 

 

Figure 1.  Transferring generalization capability of human brain to external 
machine via a decoder training by mapping fMRI activity data to distorted 
images features generated by pre-trained CNN. 

In the BOLD5000 dataset, a slow event-related fMRI 
design enables a variety of visual feature, categories, and 
semantics encoded in neural representations on three image 
datasets, since hemodynamic response time restricts the 
fMRI’s temporal resolution. Blood-oxygen-level-dependent 
(BOLD) signals are acquired by using a T2*-weighted 
gradient recalled echo-planar imaging (EPI) pulse sequence, 
with in-plane resolution = 2 × 2 mm; 106 × 106 matrix size, 2 
mm slice thickness, field of view (FOV) = 212 mm, repetition 
time (TR) = 2000 ms, echo time (TE) = 30 ms, and flip angle 
= 79 degrees [17]. To enhance image diversity, for those three 
image datasets, there are 1000 scene images, 2000 images 
from COCO dataset, and 1916 images from ImageNet dataset. 
The fMRIPrep [27-29] was used to preprocess the data with 
the ROI masks. 

B. Methods 

We manually selected 6 categories of objects from 

ImageNet dataset used in fMRI scans, since the set of images 

used in BOLD5000 is a small subset of all images in 

ImageNet. We do not use scene image and COCO images, 

because scene images have more semantic meanings rather 

than specific objects and COCO dataset has rich context 

information. The 6 categories of objects are “dog”, “bird”, 

“goat”, “insect”, “fish”, and “monkey”. Those 6 groups 

contain large categories. For example, the “dog” big category 

contains some sub-categories of dogs such as “Mexican 

hairless” and “Chihuahua” in the original ImageNet dataset. 

There are two reasons to build big category: (1) each sub-

category has a small number of images used for fMRI scans 

and they are difficult for classification due to small sample 

size; (2) grouping sub-categories into a big category can be 

used for differentiating generalization ability human brain and 

CNN. 
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Figure 2. Classification comparison between brain decoded features and 

directly computed CNN features from distorted images. The fMRI activity 

using multi-voxel information on visual cortex ROIs is regressed through the 

decoder to CNN features of multiple layers. 

To obtain distorted object images, both noise and blur are 

added into natural images used in BOLD5000 dataset. Noise 

and blur are added in images to evaluate the influence of 

distortions in object recognition performance for both human 

brain and CNN. Impulse noise [26] often deteriorates image 

quality due to defects of hardware or camera sensors, so 

impulse noise is added to images to simulate this type of 

defects in outdoor environment. The noise density is set as 

0.6. In addition, a convolution filter with window sizes 30 is 

used to for blurring original images. The pre-trained AlexNet 

model is used to extract features of original images and 

distorted images from 5 convolution layers, which was trained 

with images in ImageNet. Similar to brain decoder in the 

reference [5], BOLD signals acquired from each of 10 ROIs 

are used to train a linear regression model as: 

𝑦 = 𝑋𝛽 + 𝜀,                                (1)  

where 𝑦  is predicted feature vectors of individual feature 

layers of CNN as shown in the left sub-figure of Fig. 2,  𝑋 

represents scalar values of fMRI signal magnitudes of ROI 

voxels, 𝛽 denotes weights of voxels, and 𝜀 is bias. Similar to 

[5], we also select 1000 feature units to reduce computational 

costs, since 5 layers of AlexNet contain a large number of 

features. For comparison, distorted images are fed into the 

pre-trained network and obtain the same 1000 feature units as 

shown in the right sub-figure of Fig. 2. Without loss of 

generality, 1000 feature unites are randomly selected on 5 

convolutional layers. Support vector machine (SVM) is used 

to classify both types of features. 

IV. RESULTS 

Generalization capability is transferred from human brain 
to the classifier SVM through decoding brain activity into 
feature vectors on convolutional layers of CNN. Distorted 
image features decoded from brain and extracted from the pre-
trained neural network model are compared for evaluating two 
types of features’ performance. The experimental procedures 
involving human subjects described in this paper were 
approved by the Institutional Review Board. 

A. Pairwise Classification for Feature Evaluation  

Pairwise classification is used to improve feature selection 
performance by classifying a pair of feature vectors [27]. In 
this work, pairwise classification on 6 categories of objects 
creates n(n-1)/2 = 15 SVM classifiers (where n is 6 here) for 
evaluating feature performance. We use MATLAB for 
programming pairwise classification and dimension reduction 
of principal component analysis (PCA). Cross validation (CV) 
is used for each SVM classifier, since CV is able to provide 
more information about classifier performance through 
resampling procedure. The 15% instances are used as test data 
for calculating cross-validated classification errors. The 
average of 15 classification accuracy is calculated as  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 −
∑ 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝐸𝑟𝑟𝑜𝑟𝑖
𝑁
𝑖=1

𝑁
 ,            (2) 

where 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝐸𝑟𝑟𝑜𝑟𝑖  is each classifier error and 𝑁 
is 15 for 6 categories. It is seen in the TABLE I that the brain 
decoded features-based classification accuracy outperforms 
CNN features on both undistorted and distorted images. Both 
noisy and blurring images degrade the classification accuracy 
and they have similar performance. 

TABLE I.  AVERAGE OF PAIRWISE CLASSIFICATION ACCURACY 

 
6 Categories of Objects in Undistorted / Distorted Images 

Brain Decoded Undistorted Noise Blur 

Avera. 100% 83.59% 81.77% 82% 

B. Dimension Reduction for Identifying Discriminant 

Ability 

To identify discriminant ability between CNN features and 
brain decoded features from distorted images, PCA is used to 
reduce dimensions of both types of feature vectors from 1000 
dimensions to 2 dimensions. As shown in Fig. 3, two principal 
components from brain decoded features show better 
discriminant ability than CNN features extracted from a 
convolution layer, since 6 categories are easily and clearly 
separated on the right figure. The stronger discriminant ability 
provided by brain decoded features explains that pairwise 
classification accuracy better than CNN features of distorted 
images.  

 

Figure 3. PCA-based dimension reduction on both CNN features (left figure) 
and brain decoded features (right figure) for observing their discriminant 
abilities. Brain decoded features show the stronger discriminant capability in 
compared to CNN features on the left figure, since 6 categories are easily and 
clearly separated. 

C. Discussion from Transfer Learning Perspective 

Human brain activity space and image feature space 
spanned by convolutional neural network have different data 
distributions, so that joint distribution is needed for 
transferring learning ability from source domain to target 
domain [28]. Since the homology between human and 
machine vision has been demonstrated [5], neural data on 
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brain visual cortical areas and feature units on layers of CNN 
may have similar distributions with linear regression on the 
training data for supervised classification, although both 
brain and CNN have different mechanism. Generalization 
capability using unsupervised classification on out-of-
distribution (OOD) data may have worse performance than 
supervised mode [29], since CNN’s ability to replicate human 
visual perception relies category labels for training. To 
overcome this limit, subspace-based transfer learning 
techniques [30] may be helpful to merge brain space and 
CNN feature space into a common subspace for transferring 
generalization capability. The selection of feature units on 
convolutional layers may also influence classification 
accuracy, because discriminative patches are helpful to 
enhance performance [26]. 

V. CONCLUSION 

In conclusion, a distorted object recognition method using 

human brain feature decoding is proposed. Through 

transferring the generalization ability of human brain activity 

to CNN convolution layers, discriminant ability of brain 

decoded features enhances the classification accuracy of 

distorted images. To obtain the transferred generalization 

capability, a linear regression-based decoder is created for 

mapping fMRI signals on ROIs to feature units of convolution 

layers of CNN. Experimental results show that the proposed 

method improves the classification performance of different 

object images distorted by noise and blur. In the future work, 

brain-machine interaction will be studied using human brain 

decoded features . 
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