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Abstract— Musculoskeletal models are powerful analogues
to simulate human motion through kinematic and dynamic
analysis. When coupled with feature-rich software, muscu-
loskeletal models form an attractive platform for the integration
of machine learning for human motion analysis. Performing
realistic simulations using these models provide an avenue to
overcome constraints when collecting real-world data sets. This
motivates the need to further investigate the validity, efficacy,
and accuracy of each available model to ensure that the re-
sultant simulations are transferable to real-world applications.
Using the open-source software, OpenSim, the primary aim
of this paper is to validate an upper limb musculoskeletal
model widely used in research. Muscle activation results from
static optimization are evaluated against real-world data. A
secondary aim is to investigate the effects of two muscle force
generation constraints when evaluating the model’s validity.
Results show an agreement between the optimized muscle
activation trends and real-world sEMG readings. However,
it was found that static optimization of the musculoskeletal
model is unable to identify voluntary co-contractions since the
redundant model has more muscles than the system’s degrees
of freedom. Thus, future work will look to utilize additional
channels of information to incorporate this during analysis.

I. INTRODUCTION

Musculoskeletal models provide an analogue to simulate
the kinematics and dynamics borne from the interactions of
a series of complex systems in the human body. Historical
literature has been used to create most anatomically accurate
models. Model parameters are then refined using a variety
of anthropomorphic studies [1] and investigations from ca-
daveric [2] and live human data [3].

The popularity of musculoskeletal models is heavily influ-
enced by the availability of both commercial and open-source
software. Notable software which are used during human
motion analysis include OpenSim [4], [5], AnyBody [6], and
Human Body Model [7]. These are complemented by motion
capture systems which can perform three-dimensional kine-
matic analysis based on captured motions of the markers [8].

Typically, physiological measures are used when assessing
simulations and analyses since they are readily accessible
and have been characterized extensively in past literature [9]–
[11]. Common measures used include electroencephalograph
(EEG) [12], galvanic skin response (GSR) [13], and surface
electromyography (sEMG) [14]–[16]. However, due to the
inherent variability in human anatomy and our physiological
responses, demographic models with simple mechanics, such
as Fitts’ Law [17], have been preferred.
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A recent trend is the integration of machine learning
for human motion analysis using physiological measures.
This creates opportunities to personalize the learned models
for individuals [18], [19], which is a desirable outcome
in rehabilitation. However, collecting real-world data sets
can be time-consuming, expensive, and cumbersome. Thus,
methods that generate realistic simulations can replace or
complement real-world data sets in personalized applications.
Since sEMG data is commonly used for the integration of
machine learning in biomechanics, musculoskeletal models
are prime candidates for filling this real-world data gap.

Considering the complexity of human anatomy, there is a
need to validate musculoskeletal models to give substance to
their simulation data sets. Past works addressing this include
performing model comparisons [20] and validations [21],
[22]. One challenge when using these models is addressing
redundancy from having significantly more muscles than the
system’s degrees of freedom. The most common method
to overcome this problem uses optimization techniques that
compare their performance across various constraints [23]–
[26]. However, care must be taken when performing valida-
tion, verification, and comparison since confounding factors
may affect the results ascertained [27].

In this paper, we aim to investigate the validity of an
upper limb musculoskeletal model that is widely used in
research [28]. We use real-world data to: (1) evaluate and
compare muscle activation trends under small loads and
gravity, and (2) investigate the effect of different muscle
force generation constraints using the model. This paper is
organized as follows: Section II outlines the methodology
and setup, Section III presents and discusses the results,
while Section IV rounds out the paper with conclusions.

II. METHODOLOGY

A. Musculoskeletal Model

The upper extremity model used is modified from an
original model with 15 degrees of freedom actuated by 50
Hill-type Muscle Tendon Units (MTU) [28]. The original
model was initially validated based on the range of motion
and moment arms. Most parameters for the model were set
using empirical data from magnetic resonance imaging of
live healthy adults [29]. Additional modifications made to
the model include:

1) Body mass and inertial properties for the humerus, ra-
dius, and capitate were changed based on literature [30]
while the remaining body mass and inertial properties
were set to 0.
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2) The muscles for the model were updated to the more
recent Millard2012EquilibriumMuscle [31]. Parame-
ters for muscle activation dynamics were kept to the
default values. (Activation τ = 0.01, De-activation τ =
0.04, fiber damping = 0.05)

(a) (b)

Fig. 1: (a) The musculoskeletal model used in OpenSim for
this study. (b) A typical Hill-type muscle model with force
relationships between muscles and tendons.

B. Muscular Architecture

The Hill-type MTU [32] (Figure 1(b)) consists of an active
contractile element in parallel with a passive element. An
elastic element is placed in series with the force generation
mechanism representing the tendons attaching the muscle to
the insertion point. The five intrinsic parameters define and
normalize the muscle behavior:

• Fm
0 - Muscle maximum isometric force

• Lm
0 - Muscle optimal length coinciding with Fm

0

• V m
0 - Muscle maximum contractile velocity

• α0 - Muscle pennation at optimal length
• Lt

s - Tendon slack length.
The active contractile element force is defined as:

fmA = ˜fmA (l̃m) · f̃mV
˜

( ˙ )lm · Fm
0 · a, (1)

where f̃mA (.) represents the non-linear curve between normal-
ized muscle fiber length and active force, f̃mV (.) represents
the curve for normalized muscle fiber velocity against nor-
malized active force, and a is the muscle activation, ranging
from 0 to 1 indicating a completely passive muscle through
to a muscle with its maximum force output.

The force generated by the passive element is:

fmP = f̃mP ( ˜lm) · Fm
0 , (2)

where f̃mP (.) represents the curve for normalized muscle fiber
length against normalized passive force.

The total force output of the MTU is then defined by:

fM = (fmA + fmP ) cosα. (3)

C. Validation Setup

One healthy adult male participated in the validation trials
conducted for this work. The participant was fitted with six
10mm electrodes (99.9% silver, Delsys, Natick, MA) on
muscle groups specified in Table I.

Surface EMG data was recorded (∼1000Hz) using a data
acquisition system (LabJack, Lakewood, CO). The sEMG
signals were rectified before applying a zero-phase low-pass
filter with 3Hz pass and 5Hz stop-band frequencies. A notch
filter to cancel out signal noise from power sources were not
used based on SENIAM and ISEK recommendations [33].

TABLE I: Sensor placements of the surface EMG electrodes
for participants.

Channel Muscle Group
1 Biceps Brachii Short & Long Head
2 Triceps Brachii Long Head
3 Lateral Head
4

Deltoideus
Medius

5 Posterior
6 Anterior

To capture the kinematics of the participant, four hand-
crafted motion tracking rigid body assets (each consisting of
three retro-reflective markers) were Velcro-mounted, each in
relation to the capitate, radius, humerus, and thorax. Three-
dimensional marker coordinates were recorded at 125Hz
using a 12-camera motion capture system (NaturalPoint, Cor-
vallis, OR). The dynamics of the movements were captured
using the reaction forces from a 6-axis force-torque sensor
(ATI Industrial Automation, Apex, NC) recording at 125Hz.
The participant held the force-torque sensor, allowing for
external loads to be inserted at the lunate.

Static optimization to obtain muscular activity was per-
formed using the minimum sum of squared activation as
the cost function and, for the sake of efficiency, only every
third frame was optimized. We assume this has negligible
effect on muscle activation dynamics since voluntary muscle
recruitment has been found to be heterogeneous, with torque
transmission delays significantly over 25ms [34]. Further-
more, from the inverse dynamic results, coordinates that
experience a negligible force (< 0.1Nm or 0.1N ) were
ignored as a preliminary observation indicate that most are
path points for the muscles which are under equilibrium for
static optimization. Two sets of analyses were conducted
using the same data - one using ideal force generators and
the other with force-length-velocity (FLV) constraints [35].

For the validation trials, a series of movements were con-
ducted with the force-torque sensor acting as a small mass.
Each movement was repeated by the participant three times
in series, including shoulder flexion & extension, shoulder
abduction & adduction, horizontal abduction & adduction
with internal & external rotations, and water drinking motion.

III. RESULTS AND DISCUSSION

The resultant muscle activation trends obtained from static
optimization were compared against the six-channel sEMG
readings collected during the validation trials. Figure 2
shows the results from the static optimization using the
FLV constrained muscle forces for the shoulder flexion
and extension motion. The model treats muscle groups as
homogeneous entities, despite the heterogeneity of muscle
groups in real-world muscle dynamics, thus resulting in
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the spiking nature of the muscle activation. Taking this
into account, the resultant muscle activation across the six
different muscle groups show that the whole musculoskeletal
model has plausible agreement with real-world trends. The
remaining motions exhibit similar trends. Additional figures
can be accessed in the repository.
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Fig. 2: Results from the preliminary validation trial for
shoulder flexion and extension. Static optimization results
are based on FLV constrained MTUs and EMG readings are
heuristically normalized.

Secondary results for comparisons between ideal force
generators, which do not take into account force-length and
force-velocity relationship, and FLV-constrained muscles can
be observed in Figure 3. We observe that ideal muscles tend
to require less activation since the dynamic properties of
the MTU typically generate forces lower than the maximum
isometric force.
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Fig. 3: Results comparing between muscle activation from
ideal and FLV constrained force generators.

There are a few factors that may affect the generalization
of our findings, especially for different participants. Since
we are treating real-world sEMG data as the ground truth,
the evaluations might be skewed by variability observed
during the setup protocols such as electrode placement and
the participant’s movement choice. One common method to
overcome this is to normalize muscle activation by obtaining
the maximum voluntary contraction (MVC). However, this
will require the participants to perform activities to identify

MVC values. Thus, variance will persist since the setup
protocols for the collection of sEMG data are identical.

Another factor that affects our results come from the
lack of model parameters. Since accurate mass and inertial
properties for particular bone segments are difficult to obtain,
most models leave these parameters as zero, and the resultant
muscle activation does not account for this. Furthermore,
static optimization assumes the system state is in equilibrium,
not considering other dynamic forces in continuous states
such as Coriolis effects and muscle-tendon dynamics.

One limitation of performing numerical analyses with a
redundant model is the inability to account for co-contracting
muscle pairs. To highlight this effect, the participant volun-
tarily co-contracted their arm during the same water drinking
motion. The resultant difference between the optimized mus-
cle activation and the sEMG data can be seen in Figure 4,
highlighting the limitations of these solutions when using the
musculoskeletal model.
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Fig. 4: Results from a water drinking motion in voluntary
relaxed and co-contracted states.

The role of antagonistic muscle pairs has long been
thought to be critical in controlling human body impedance.
To translate this into numerical methods when solving mus-
cle activation, more information is required to take these
muscle pairs into account. Future work will incorporate a
model that correlates the grip strength of the hand to vol-
untary co-contraction levels across the forearm. The vision
is to take these additional constraints into account during
calculations.

IV. CONCLUSION

This paper presented a preliminary validation to a mus-
culoskeletal model that is widely used in research. A com-
parison of optimized muscle activation trends against real-
world sEMG data was conducted. Results suggest that the
model reflects the behavior of the human upper limb, with a
consensus in muscle activation trends.

Future work will investigate the use of additional informa-
tion to address co-contractions, and seek to overcome some
assumptions in this work. Future trials will engage more
participants to bolster confidence in the model for future
applications such as rehabilitation assessment and assistance-
as-needed robotics.
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[8] J. Garcı́a-López and P. A. d. Blanco, “Kinematic Analysis of Bicycle
Pedalling Using 2D and 3D Motion Capture Systems,” ISBS Proceed-
ings Archive, vol. 35, no. 1, 2017.

[9] R. A. McCleary, “The nature of the galvanic skin response,” Psycho-
logical Bulletin, vol. 47, no. 2, pp. 97–117, 1950.

[10] S. P. Magnusson, E. B. Simonsen, P. Aagaard, P. Dyhre-Poulsen, M. P.
McHugh, and M. Kjaer, “Mechanical and physiological responses to
stretching with and without preisometric contraction in human skeletal
muscle,” Archives of Physical Medicine and Rehabilitation, vol. 77,
no. 4, pp. 373–378, 1996.

[11] C. J. De Luca, “The Use of Surface Electromyography in Biomechan-
ics,” Journal of Applied Biomechanics, vol. 13, no. 2, pp. 135–163,
1997.

[12] F. Lotte, L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rako-
tomamonjy, and F. Yger, “A review of classification algorithms for
EEG-based brain-computer interfaces: A 10 year update,” Journal of
Neural Engineering, vol. 15, no. 3, 2018.

[13] Y. Shi, N. Ruiz, R. Taib, E. Choi, and F. Chen, “Galvanic skin response
(GSR) as an index of cognitive load,” in Conference on Human Factors
in Computing Systems - Proceedings. New York, New York, USA:
Association for Computing Machinery, 2007, pp. 2651–2656.

[14] M. Hamaya, T. Matsubara, T. Noda, T. Teramae, and J. Morimoto,
“Learning assistive strategies for exoskeleton robots from user-robot
physical interaction,” Pattern Recognition Letters, vol. 99, pp. 67–76,
2017.

[15] R. Stephenson, R. Chai, and D. Eager, “Isometric Finger Pose Recog-
nition with Sparse Channel SpatioTemporal EMG Imaging,” in 2018
40th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC). IEEE, 2018, pp. 5232–5235.

[16] M. Jabbari, R. N. Khushaba, and K. Nazarpour, “EMG-Based Hand
Gesture Classification with Long Short-Term Memory Deep Recurrent
Neural Networks,” in 2020 42nd Annual International Conference of
the IEEE Engineering in Medicine & Biology Society (EMBC), vol.
2020-July. IEEE, 2020, pp. 3302–3305.

[17] S. Sutjipto, Y. Lai, M. G. Carmichael, and G. Paul, “Fitts’ law in
the presence of interface inertia,” in 2020 42nd Annual International
Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC). IEEE, 2020, pp. 4749–4752.

[18] Y. Lai, S. Sutjipto, M. D. Clout, M. G. Carmichael, and G. Paul,
“GAVRe2 : Towards Data-Driven Upper-Limb Rehabilitation with
Adaptive-Feedback Gamification,” in 2018 IEEE International Con-
ference on Robotics and Biomimetics (ROBIO). IEEE, 2018, pp.
164–169.

[19] H. Krebs, J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol, K. Rannekleiv,
B. Volpe, and N. Hogan, “Rehabilitation Robotics: Performance-Based
Progressive Robot-Assisted Therapy,” Autonomous Robots, vol. 15,
no. 1, pp. 7–20, 2003.

[20] A. Falisse, S. Van Rossom, J. Gijsbers, F. Steenbrink, B. J. van Basten,
I. Jonkers, A. J. van den Bogert, and F. De Groote, “OpenSim Versus
Human Body Model: A Comparison Study for the Lower Limbs
During Gait,” Journal of Applied Biomechanics, vol. 34, no. 6, pp.
496–502, 2018.

[21] T. Bassani, E. Stucovitz, Z. Qian, M. Briguglio, and F. Galbusera,
“Validation of the AnyBody full body musculoskeletal model in com-
puting lumbar spine loads at L4L5 level,” Journal of Biomechanics,
vol. 58, pp. 89–96, 2017.

[22] D. G. Thelen and F. C. Anderson, “Using computed muscle control
to generate forward dynamic simulations of human walking from
experimental data,” Journal of Biomechanics, vol. 39, no. 6, pp. 1107–
1115, 2006.

[23] A. Seth and M. G. Pandy, “A neuromusculoskeletal tracking method
for estimating individual muscle forces in human movement,” Journal
of Biomechanics, vol. 40, no. 2, pp. 356–366, 2007.

[24] D. G. Thelen, F. C. Anderson, and S. L. Delp, “Generating dynamic
simulations of movement using computed muscle control,” Journal of
Biomechanics, vol. 36, no. 3, pp. 321–328, 2003.

[25] Y. C. Lin, T. W. Dorn, A. G. Schache, and M. G. Pandy, “Com-
parison of different methods for estimating muscle forces in human
movement,” Journal of Engineering in Medicine, vol. 226, no. 2, pp.
103–112, 2012.

[26] T. S. Buchanan, D. G. Lloyd, K. Manal, and T. F. Besier, “Estimation
of muscle forces and joint moments using a forward-inverse dynamics
model,” Medicine and science in sports and exercise, vol. 37, no. 11,
pp. 1911–1916, 2005.

[27] J. L. Hicks, T. K. Uchida, A. Seth, A. Rajagopal, and S. L. Delp,
“Is My Model Good Enough? Best Practices for Verification and
Validation of Musculoskeletal Models and Simulations of Movement,”
Journal of Biomechanical Engineering, vol. 137, no. 2, p. 020905,
2015.

[28] K. R. S. Holzbaur, W. M. Murray, and S. L. Delp, “A Model of the
Upper Extremity for Simulating Musculoskeletal Surgery and Ana-
lyzing Neuromuscular Control,” Annals of Biomedical Engineering,
vol. 33, no. 6, pp. 829–840, 2005.

[29] K. R. Holzbaur, W. M. Murray, G. E. Gold, and S. L. Delp, “Upper
limb muscle volumes in adult subjects,” Journal of Biomechanics,
vol. 40, no. 4, pp. 742–749, 2007.

[30] M. G. Carmichael and D. Liu, “Estimating Physical Assistance Need
Using a Musculoskeletal Model,” IEEE Transactions on Biomedical
Engineering, vol. 60, no. 7, pp. 1912–1919, 2013.

[31] M. Millard, T. Uchida, A. Seth, and S. L. Delp, “Flexing computa-
tional muscle: Modeling and simulation of musculotendon dynamics,”
Journal of Biomechanical Engineering, vol. 135, no. 2, 2013.

[32] A. V. Hill, “The heat of shortening and the dynamic constants of
muscle,” Proceedings of the Royal Society of London. Series B -
Biological Sciences, vol. 126, no. 843, pp. 136–195, 1938.

[33] P. Konrad, “The abc of emg,” Noraxon U.S.A., Inc., Arizona, USA,
Tech. Rep., 2005.

[34] A. V. Dieterich, A. Botter, T. M. Vieira, A. Peolsson, F. Petzke,
P. Davey, and D. Falla, “Spatial variation and inconsistency between
estimates of onset of muscle activation from EMG and ultrasound,”
Scientific Reports, vol. 7, no. 1, pp. 1–11, 2017.

[35] F. E. Zajac, “Muscle and tendon: properties, models, scaling, and
application to biomechanics and motor control,” Critical reviews in
biomedical engineering, vol. 17, no. 4, pp. 359–411, 1989.

4512


