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Abstract— In this study, we proposed a framework for ex-
tracting gait events and extensive temporal features, seamlessly,
during walking and running on a treadmill by constructing
a finite state machine (FSM) transition rules based on two
IMU sensors attached to the back of the shoes. Detailed inner-
class states were defined to recognize the double support phase
on walking gait and the double flight phase on running gait.
Further, an in-depth speed-based analysis of temporal gait
features can be performed for each tested speed with an auto-
matic speed change detection algorithm based on the moving
average filter applied to motion intensity data. The results have
demonstrated that the FSM can accurately distinguish walking
gait and running gait while also extract a detailed gait phase,
respectively. This finding may contribute to a more flexible gait
analysis where a change in speed or transition from walk to
run can be anticipated and recognized accordingly.

I. INTRODUCTION

Gait analysis can be used as a functional tool to as-
sess a wide range of applications such as characterizing
pathological gait, tracking rehabilitation progress, and also
applied to various sports applications. Typically, gait anal-
ysis is performed under a laboratory setting comprised of
motion capture and force plate systems for gold standard
measurement, or motion capture and instrumented treadmill
for a more detailed locomotion study with a controlled speed
protocol. Both of those systems are costly, while the setup
and operation can be time-consuming. The nature of this will
limit the accessibility of using these gait analysis systems to
only some research facilities.

On the other hand, recent advances in wearable sensors
have made it possible to assess gait widely in a more
natural or out-of-lab environment with relatively low cost
as compared to the standard measurement. For example, a
body-worn inertial measurement unit (IMU) has widely been
used to analyze human motion in both indoor and outdoor
settings [1],[2]. Several benchmark studies have been carried
out to assess the agreement between wearable sensors and
the gold standard measurement [3]-[5], where the potential
and limitations were explained in detail.

A treadmill-based gait analysis enables a controlled speed
experiment that is useful for tracking the gait performance of
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subjects across various speeds. Increased treadmill speed at
some point will influence subjects to change their gait from
walking gait to running gait. Some studies have argued that
walk-run mixture at intermediate locomotion speed leads to
optimization of metabolic energy [6].

Most of the state of the arts on wearable systems for gait
analysis is developing a separate analysis between those two
gait modalities [7]. We found that this study [8] discussed
the assessment of temporal gait parameters using gyroscope
during treadmill walking and running. But again, each of
the tested speeds was captured and analyzed separately in
different data recording sessions.

In this paper, we address this problem by introducing a
framework that can incorporate both walking and running
gait analysis, seamlessly by means of constructing a finite
state machine (FSM) followed by detailed inner-class states
in a single data recording session. Therefore in this paper,
we proposed a controlled speed experiment on a treadmill to
test our proposed framework. We have previously validated
the performance of our algorithm to the gold standard
measurement of motion capture and force plate systems on
[5]. Although it has covered a wide range of self-selected
speeds, it has not fully covered controlled slower and faster-
walking speeds. Therefore we also aim to see the effect of
those speeds on the gait of the subjects.

The rest of this paper is organized as follows. Section
II discussed our proposed framework, experiments, and
methods used in this study. Results and discussions are
presented in Section III, which covers the overall temporal
gait assessment results and interpretation. Finally, Section
IV concludes the study and provides a direction for future
research regarding this topic.

II. METHODS

A. Subjects

Four subjects participated in the study with a mean age
of 24±1.4 years, mean height of 171.8±6.1 cm, and mean
weight of 71.5±7.9 kg. All of the subjects reported that they
have no severe lower limb-related injuries in the past year
prior to the experiment. All subjects had given informed
consent prior to participation in this experiment.

B. Data collections and preprocessing

In this study, all subjects wore two IMU (Trigno Re-
search+, Delsys, MA, USA) wireless systems on the back of
the shoes as presented in Fig. 1a. We selected this location as
it was found to have 93 % in terms of accuracy for detecting
the stride number [9]. In this study, 3-axis gyroscope and
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3-axis accelerometer data from each foot were considered.
The sampling rate of the IMU sensors was set at 148 Hz.
All the collected data were processed for analysis using
MATLAB (Mathworks Inc., Natick, MA, USA). A 4th order
Butterworth low pass filter was applied to all the collected
data with a frequency cut-off of 6 Hz. After the filtering
process, the data is ready to be used further for our designed
algorithm to extract various temporal gait features.

C. Experiment protocols

Subjects were instructed to follow a pre-defined variable
speed plan on a treadmill, starting from 2 km/h to 10
km/h, where the overall tested speed is v = 2, 4, 5, 6, 8, 10
km/h. During the experiment, subjects were also told to
stop anytime if they felt uncomfortable. The purpose of
this experiment was to see the effect of walking speed on
temporal gait patterns for each subject. In addition to that,
a comparison between subject-specific walking and running
gait was also the interest of this experiment. The experiment
was developed and performed according to the principles of
the Declaration of Helsinki.

D. Temporal gait analysis

This section explains the overall procedure of the quan-
titative gait assessment (QGA) proposed in this study. As
mentioned earlier, we used only two IMUs attached to the
back of the shoes of each subject. Raw data from the IMU
sensors were filtered using a 4th order Butterworth low pass
filter with a cut-off frequency of 6 Hz. Following the filtering
process, the data were processed according to the extracted
gait features. The list of extracted features is presented in
Table I.

1) Gait Event Detection: Gyroscope data were used to
estimate three major gait events, i.e. initial contact (IC), toe-
off (TO), and mid-swing (MSw). A heuristic threshold-based
algorithm was constructed to detect these gait events. IC and
TO were defined as the local maxima, whereas MSw was
defined as the local minima detected from the gyro data.
The same principles are applied to recognize running gait
events, i.e. foot-contact (FC), foot-off (FO), and mid-flight
(MF). Our detailed heuristics algorithm is available on [5].

2) Activity class: In this part of the study, we introduced
three activity classes named walking, running, and others
class, to easily distinguish certain movements performed by
the subjects. Certain thresholds were defined to construct a
finite state machine (FSM) transition rule between the activ-
ity classes, as depicted in Fig. 1a. The movement performed
will fall under the ’walking’ class if there are sequences of
IC events detected. As two IMUs were used, the inner-class
states could detect separately between left and right events,
thus could lead to a more detailed double support analysis
in walking class (Fig. 1b). On the other hand, if there is no
initial and terminal double support detected, the movement
will fall under the ’running’ class (Fig. 1c). Any movement
performed that did not satisfy any of the above-described
states was classified as the ’others’ class.

TABLE I
OVERALL EXTRACTED FEATURES

Features (f ) Unit Description

Gait events - Consists of IC, TO, MSw, for walking
gait; and FC, FO, and MF, for running
gait

Stride time s Time needed to complete one gait cycle
from IC to IC (walking/running)

Single Support time s Time elapsed when one foot is in contact
with the ground (walking)

Double Support time s Time elapsed when both foot are in
contact with the ground (walking)

Swing time s Time elapsed when foot is not in contact
with ground (walking)

Contact time s Time elapsed when foot is in contact
with ground (running)

Double Flight time s Time elapsed when both foot are not in
contact with the ground (running)

Flight time s Time elapsed when one foot is not in
contact with ground (running)

Gait phase % Percentage of average gait phase con-
sisted of iDS, SS, tDS, SW for walking,
and CP, iDF, FP, tDF for running

Symmetry Index % Symmetry feature based on stance time
Asymmetry Indices s Absolute mean difference of temporal

features between sides (L&R)
Variability Indices s Various indices based on standard devi-

ation of certain features
Activity class - 0 for other activities, 1 for walking, 2

for running

3) Temporal features: Temporal features such as stride
time, stance time, and swing time were derived based on
the extracted gait events. Since we used two IMU sensors,
in this study we calculated more detailed temporal features.
Double support was estimated from the detection of IC of
the left side to the detection of TO of the right side and
vice versa. Initial and terminal double support, iDS and
tDS, are interchangeable terms depending on the reference
side. Similar to walking gait, on the running gait, initial and
terminal double flight, iDF and tDF are interchangeable
terms depending on the reference side.

Moreover, we also present these temporal features in terms
of the percentage of each gait phase. Here we divided
walking gait into four phases, consisted of iDS, SS, tDS, and
SW, where SS and SW are single support and swing phases,
respectively. Meanwhile, for running gait, we divided also it
into four phases, consisted of iDF, CP, tDF, FP, where CP and
FP are contact phase and single flight phase, respectively.

4) Other gait features: We derived four kinds of gait
indices based on the extracted temporal gait features. Sym-
metry Index (SI) is a derived feature from the stance time of
both sides. To calculate this feature, we averaged the total
stance time of the left side to the right side for every walking
or running class per experiment performed. The minus sign
in SI indicates an overall less stance time on the left side
while the positive sign indicates an overall less stance time on
the right side. Asymmetry Indices (AIs) are various indices
based on the absolute mean difference between left and right
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(a)                                                                           (b)                                                                                    (c)

Fig. 1. The proposed framework of seamless temporal gait analysis during walking and running on a treadmill. (a) Example of a subject following the
experimental protocols of controlled speed walking and running with two IMUs attached on the back of the shoes [top], with FSM class and transition
rules that are applied in this study [bottom]. (b) Gait events and phases are recognized for walking gait [top] and the corresponded inner class states in
FSM [bottom]. (c) Gait events and phases are recognized for running gait [top] and the corresponded inner class states in FSM [bottom].

TABLE II
PERCEPTION QUESTIONNAIRE

Subject Comfort walking
speed (km/h)

Transition speed
(km/h)

Comfort running
speed (km/h)

S01 5 6 to 8 10
S02 5 6 to 8 10
S03 4 6 to 8 10
S04 4 6 to 8 8

sides. AIs could potentially give important information about
the subject-specific tendency of using left and right foot
in gait. Variability Indices (VIs) are derived based on the
standard deviation of temporal gait features. To give a more
specific speed-based analysis, we can further detailed SI, AIs,
and VIs based on speed to analyze how these indices changed
over the increased speed of walking or running gait.

5) Speed change detection: In order to do a precise
speed-based analysis, we introduce a speed change detection
algorithm based on a simple moving average filter applied
to Motion Intensity (MI) data [5], [10]. A 20-points moving
average filter, MA20, was found sufficient to capture the
changing dynamic of MI data, which highly correlated with
the changing in gait speed, based on several preliminary
experiment trials. We set a threshold at 75th percentile of the
difference in MA20 value to determine if speed is constant
or in transition. If MA20 crossed the threshold value, we
marked it as a ’transition’ state, while if it was under we
marked it as a ’constant’ speed state.
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Fig. 2. Result from S01: Percentage of gait phases from a single experiment
trial, where left and right gait can be quantified separately. Mid-figure depict
the recognized activity class and the changing of speed throughout the
experiment trial.
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Fig. 3. Summary of temporal gait features distinguished by treadmill speed. Columns represent subjects, i.e. (a) S01, (b) S02, (c) S03, and (d) S04. Top
row to bottom represent percentage of gait shares, asymmetry index, variability index, and symmetry index, respectively.

III. RESULTS AND DISCUSSIONS

We asked each of the participants about their perception
of their gait during the experiment. Their responses have
been summarized in Table II. This will help us to compare
the perception of subjects and actual data-based results. In
terms of the agreement to gold standard measurement, our
framework in this study has been benchmarked to motion
capture and force plate system as well as compared to various
existing studies. The detailed discussion on this issue is out
of the scope of this study but is extensively discussed on [5].
In the benchmark study, the temporal difference to force plate
system were 4.22±15.48 ms (mean ± S.D.) and -8.31±21.02
ms (mean ± S.D.) for initial/foot contact and toe/foot-off
events, respectively. Thus, in other words, we have verified
that the accuracy of events detection falls roughly between
1-4 data samples (6.8 - 27.2 ms) at a 148 Hz sampling rate.

Data preprocessing, processing, and analysis were all done
using a commercial PC with Intel Core i7-8750H 2.2 GHz

CPU. All of the above processes were done in a specialized
MATLAB-based application that we developed to execute
the proposed framework. Demo software of this study is
available on https://github.com/yonatancah/Temporal-Gait-
Evaluation.

Figure 2 serves as an example of data analysis performed
under the proposed framework for a single experiment trial.
Here, the percentage of gait phases from the left and right
sides of S01 is presented. A total of 406 gait cycles were
detected from this experiment trial which lasted around 6
minutes and 20 seconds. The middle figure indicates the
activity class as well as the point where constant speed or in
’transition’ occurred.

Table III presents a detailed report on temporal features
distinguished by the treadmill speed. Here we extracted iDS,
SS, tDS, and SW time for walking gait and CP, iDF, FP,
and tDF time for running gait. Walking gait was observed
for 2,4,5, and 6 km/h treadmill speed, while running gait
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TABLE III
QUANTITATIVE GAIT ASSESSMENT : A DETAILED REPORT ON TEMPORAL GAIT FEATURES DISTINGUISHED BY TREADMILL SPEED.

Subject
Mean Temporal Features (s) Gait Indices

Treadmill Speed
iDS SS/CP tDS iDF SW/FP tDF Stride time SI (%) AI (s) VI (s)

S01

0.105 0.452 0.113 0.432 1.102 -2.3 0.015 0.170(L) 0.168(R) 2 km/h

0.047 0.432 0.052 0.443 0.973 -1.4 0.009 0.024(L) 0.023(R) 4 km/h

0.027 0.438 0.034 0.449 0.948 -1.9 0.010 0.016(L) 0.016(R) 5 km/h

0.011 0.422 0.019 0.430 0.882 -1.7 0.007 0.015(L) 0.012(R) 6 km/h

0.250 0.097 0.258 0.100 0.704 -2.3 0.006 0.010(L) 0.080(R) 8 km/h

0.215 0.126 0.220 0.127 0.688 -1.4 0.004 0.009(L) 0.009(R) 10 km/h

S02

0.134 0.636 0.178 0.615 1.564 2.9 0.019 0.138(L) 0.104(R) 2 km/h

0.060 0.508 0.058 0.502 1.128 1.2 0.007 0.020(L) 0.019(R) 4 km/h

0.038 0.478 0.039 0.479 1.034 0.3 0.001 0.015(L) 0.016(R) 5 km/h

0.025 0.468 0.023 0.469 0.983 0.2 <0.001 0.014(L) 0.015(R) 6 km/h

0.230 0.131 0.238 0.132 0.731 -3.9 0.009 0.008(L) 0.009(R) 8 km/h

0.212 0.135 0.220 0.132 0.699 -4.4 0.01 0.007(L) 0.008(R) 10 km/h

S03

0.213 0.576 0.179 0.555 1.523 1.4 0.015 0.050(L) 0.055(R) 2 km/h

0.085 0.479 0.780 0.466 1.108 1.8 0.011 0.013(L) 0.016(R) 4 km/h

0.063 0.458 0.560 0.449 1.026 1.6 0.009 0.006(L) 0.007(R) 5 km/h

0.041 0.413 0.320 0.444 0.930 0.7 0.004 0.054(L) 0.052(R) 6 km/h

0.270 0.116 0.266 0.122 0.774 0.8 0.002 0.007(L) 0.008(R) 8 km/h

0.236 0.136 0.234 0.142 0.747 0.2 <0.001 0.006(L) 0.007(R) 10 km/h

S04

0.186 0.601 0.159 0.577 1.522 1.4 0.012 0.095(L) 0.095(R) 2 km/h

0.081 0.455 0.075 0.450 1.060 0.8 0.005 0.013(L) 0.012(R) 4 km/h

0.056 0.423 0.048 0.419 0.946 0.9 0.005 0.017(L) 0.019(R) 5 km/h

0.029 0.395 0.022 0.403 0.850 1.1 0.003 0.027(L) 0.033(R) 6 km/h

0.245 0.104 0.251 0.106 0.706 1.9 0.005 0.013(L) 0.014(R) 8 km/h

0.224 0.123 0.211 0.141 0.699 7.5 0.015 0.007(L) 0.006(R) 10 km/h

was observed for 8 and 10 km/h treadmill speed consistently
across all subjects. These results are in agreement with self-
reported assessment by the subjects as presented in Table II,
where all subjects said that they changed from walk to run at
6 to 8 km/h transition. We observed that double support time,
single support time, and contact phase time was decreased
as treadmill speed increase across all subjects. On the other
hand, even though we only have two speeds representing
running gait, i.e. 8 km/h and 10 km/h, we observed that
double flight time was increased as treadmill speed increase.
These results are also presented in the top row of Figure 3
for every subject.

On gait indices, we presented SI, AI, and VI with respect
to treadmill speed on Table III and Figure 3. On the results of
SI, we found that it was unique to each subject. S01 showed
an overall negative SI with an average of -1.83% SI in all
tested treadmill speeds. S02 showed a decrement trend in
SI starting from 2.9% SI on 2 km/h speed to -4.4 % SI on
10 km/h speed, with an average of 2.15 % SI. To be more
precise, on walking gait we observed an overall positive SI,
while on running gait we observed an overall negative SI.
This means that on walking gait S03 and S04 showed an
overall positive SI with an average of 1.08 % and 2.27 % of

SI, respectively.
On the results of VI, we observed that the highest temporal

variability on both left and right sides occurred on the
slowest treadmill speed, i.e. 2 km/h. Interestingly, only S03
experienced another comparable high variability on 6 km/h
treadmill speed, where left side variability was 0.054 s
compared to 0.050 s on 2 km/h, and right side variability
was 0.055 s on 2 km/h and 0.052 s on 6 km/h. One of the
importance of looking at VI is that we can distinguish the
timing variability of each side which can be useful to assess
if there is impairment of one of the sides of the subjects.
It should be noted that gait index scores may not give an
absolute definitive condition of subjects, but it can be used
as a relative measure to make an intra-subject comparison
such as tracking rehabilitation progress or to make an inter-
subject comparison between groups of interest [11].

On the computational time, we observed an average of
10.84 ± 0.59 s to finish computation and extract all of the
features depicted in Table I, with an average experiment time
across all trials of 417.95 ± 26.55 s. Note that this result was
achieved using the computational hardware mentioned early
in this section and executed in a MATLAB environment.
Other processing hardware or programming language may
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result in different computational costs. Looking at the com-
putational cost of around 11 seconds to complete roughly 7
minutes of data analysis, has made it highly possible for
a real-time or online system to be constructed using our
proposed framework.

IV. CONCLUSIONS
We have investigated our proposed framework of seamless

extraction of temporal gait features for walking and running
gait performed on a variable speed treadmill. By using two
IMU sensors on both sides of the foot and introducing activ-
ity class with detailed inner-class states, we can successfully
extract detailed gait phases both on walking and running gait
that incorporate double support and double flight phases,
respectively. In this study we also introduced a moving-
average based filtering technique to filter out transition data
between speed changing, thus a precise speed-based analysis
can be performed. In sport application, this approach will
contribute to investigating the consistency and performance
of an athlete given a specific speed of treadmill training, in
addition to a video-based analysis [12],[13]. To give a more
in-depth analysis, we extracted several gait indices based on
temporal features. These features are useful to be applied
in a clinical setting such as to track rehabilitation progress
and to compare data between subjects of interest [14],[15].
To conclude, the developed framework in this study would
promote a more unrestrained gait analysis, where speed
change and gait change can be anticipated and recognized,
which reduces the amount of interruption to subjects during
an experiment. Future work is to test it in an outdoor setting
and considering a larger cohort and prolonged experiment
time.
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