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Abstract— For the CT iterative reconstruction, choosing the
parameters of different regularization terms has been a difficult
problem. Transforming the reconstruction problem into con-
strained optimization can solve this problem, but determining
the constraint range and accurately solving it remains a
challenge. This paper proposes a CT reconstruction method
based on constrained data fidelity term, which estimates the
distribution of the constraint function by Taylor expansion to
determine the constraint range. We respectively use Douglas-
Rachford splitting (DRS) and Projection-based primal-dual
algorithm (PPD) to split the reconstruction problem and solve
the data fidelity subproblem. This method can accurately
estimate the constrained range of data fidelity terms to ensure
reconstruction accuracy and use different regularization terms
for reconstruction without parameter adjustment. Three regu-
larization terms are used for reconstruction experiments, and
simulation results show that the proposed method can converge
stably, and its reconstruction quality is better than the filtered
back-projection.

I. INTRODUCTION

The optimization of the combination of the data fidelity
term and regularization term is a common form of CT
reconstruction methods in recent years. Plug and play(PnP) is
a framework for solving this problem with split optimization
algorithms such as alternating direction method of multipliers
(ADMM) [1] or primal-dual splitting (PDS) [2]. The proxi-
mal operator of regularization in PnP is treated as a denoiser,
and advanced regularization terms and even filters can be
used for CT reconstruction.

The determination of the balance parameter for different
regularization terms is a difficult problem. Some studies
have proposed constrained data fidelity terms ||Ax−y||22 ≤ ε .
Sidky et al. [3] and Niu et al. [4] both uses constrained
data fidelity term, but solve the data constraint with a back-
projection method. Alfonso et al. [5] proposed an ADMM-
based method to solve the constrained image restoration
problem, but each iteration requires solving a large-scale
linear equation system. Shunsuke Ono uses the PDS method
to solve the same problem [2]. PDS does not need to
solve large-scale linear equations but can only solve convex
problems, and the parameters are limited to the system
matrix. The meaning of ε is the noise level of data, but
few studies discuss the specific method of determining ε .
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In this article, we use Douglas-Rachford splitting (DRS)
[6]- a variant of ADMM - as a splitting algorithm to solve the
reconstruction problem with nonconvex regularization terms.
Projection based primal–dual algorithm (PPD) [7] which is
similar to PDS but more robust, solves the subproblem of
constrained data fidelity. The data fidelity term is regarded
as a random variable function of the measurement data, and
we estimate its distribution with Taylor expansion method to
determine constrained rang.

II. NOISE MODEL AND DATE FIDELITY TERM

Assuming a monochromatic light source and measured by
the number of photons, the measurement data is:

yi = ln N0
zi

(1)

Where N0 represents the number of photons incident, zi and
yi are the transmission data and sinogram data of the i-th X-
ray, respectively. Using Poisson + Gaussian model [8], we
have:

zi ∼ Poisson(z∗i )+Normal(0,σ2
G)

z∗i = N0e−[Ax]i = N0e−y∗i
(2)

Where z∗i is the mean of zi, σ2
G is the variance of Gaussian

noise, and generally, Gaussian noise is much smaller than
quantum noise σ2

G � z∗i . x ∈ RN×1 is the image of linear
attenuation, and A ∈ RK×N is system matrix. K and N are
the numbers of projections and pixels, respectively. y∗ = Ax
is the ideal value of y.

We define a weighted distance D from y∗ to y,

D =

√
K

∑
i=1

wi (y∗i − yi)
2 (3)

where wi is the weight. Generally, we set wi as the reciprocal
of the variance of yi.

Let S = diag{√wi} , AS = SA and yS = Sy, and then

D =

√
(Ax− y)T ST S (Ax− y)

= ‖ASx− yS‖2

(4)

In this article, we take the constraint of D as the data
fidelity term.

Perform Taylor expansion for (1) at z∗i and estimate the
mean uyi and variance σ2

yi of yi with the expansion result [9].
When z∗i is a large number and z∗i � σ2

G, we can get uyi = y∗i
σ2

yi =
ey∗i
N0

+
e2y∗i σ2

G
N2

0
. We approximate that σ2

yi=
eyi
N0
+

e2yi σ2
G

N2
0

.

Let ti =
√

wi (y∗i − yi)∼ Normal (0,1), D2 = ∑
K
i=1 t2

i . Sim-
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ilarly, use Taylor expansion to estimate the distribution of
D2. When uti = 0, it can get uD2 = ∑

k
I=1 σ2

ti ,σD2 = 2∑
k
I=1 σ4

ti
, and D2 obeys the normal distribution.

D2 ∼ Normal (K,2K) (5)

In this article, we limit the value range of D2 to
[uD2 −4σD2 ,uD2 +4σD2 ]. With indicator function lC (x)( If
x ∈C, lC (x) = 0, otherwise lC (x) =+∞.), CT reconstruction
is expressed as a constraint optimization problem.

argmin
x

lBx (x)+R(x) (6)

Where Bx = {x|ε1 ≤ ‖ASx− yS‖2 ≤ ε2}, ε1 =
√

K−4
√

2K
ε2 =

√
K +4

√
2K, and R(x) is the regularization term.

III. OPTIMIZATION METHOD

DRS can be regarded as a fixed-point iterative algorithm
and recently proved to be suitable for nonconvex problems
[10] [1] [6].The suitable optimization problem form of DRS
is argmin

x
ϕ1 (u)+ϕ2 (u). The DRS iterative steps for solving

(6) are:
uk = proxpR (sk)

vk = proxplBx
(2uk− sk)

sk+1 = sk + vk−uk

(7)

Where p is a constant, uk(or vk) is the solution to the problem
and proxr f denotes the proximity operator of function f :

proxr f (z) = argmin
x

f (z)+
1
2r
‖y− z‖2

2 (8)

proxpR (sk) is equivalent to a denoising procedure for the
noisy image sk, and it can be replaced by a denoiser φ (sk, p).
p is a denoising parameter, which does not affect the final
result in convex problems. Different advanced regularization
or denoising models can be conveniently applied to the
reconstruction problem in this step.

Let z = 2uk−sk, proxplBx
(z) equals to the projection from

z onto the set Bx, noted PBx (z) and we can set p to any
suitable value in this step. PPD can solve this problem.

Alotaibi et al. proposed PPD in 2015 [7], which, compared
with PDS, has fewer parameter restrictions and is more
robust. For the problem of the form argmin

x
f (x)+g(Lx) ,

the solution steps are shown in Algorithm 1, where f and g
are convex functions and x∗ is the solution to the problem.
In practice, τk = 0 is difficult to achieve, and xk can be the
solution after multiple iterations.

Set lBy (y) with By = {y|ε1 ≤ ‖y− yS‖2 ≤ ε2} , then

PBx (z) = argmin
x

lBy (ASx)+ 1
2p ‖x− z‖2

2 (9)

let f (x) = 1
2p ‖x− z‖2

2, g(y) = lBy (y), and L = AS. lBy (y)
is nonconvex, but PPD can still converge if PBy (v) is approx-
imated as (10) with T = ε1+ε2

2 .

PBy (v) =

{
v v ∈ By

yS +
T (v−yS)
‖v−yS‖2

v /∈ By
(10)

Algorithm 1 Projection based primal–dual algorithm (PPD) 
set 𝑟𝑟1, 𝑟𝑟2 ∈ (0, +∞) 𝜆𝜆𝑘𝑘 ∈ (0,2) 𝑥𝑥1and 𝑣𝑣1 as initial 
𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 = 1,2 … 
 𝑎𝑎𝑘𝑘 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑟𝑟1𝑓𝑓(𝑥𝑥𝑘𝑘 − 𝑟𝑟1𝐿𝐿𝑇𝑇𝑣𝑣𝑘𝑘) 

𝑙𝑙𝑘𝑘 = 𝐿𝐿𝑎𝑎𝑘𝑘 

𝑏𝑏𝑘𝑘 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑟𝑟2𝑔𝑔(𝑙𝑙𝑘𝑘 + 𝑟𝑟2𝑣𝑣𝑘𝑘) 
𝑠𝑠𝑘𝑘 = 𝑟𝑟1−1(𝑥𝑥𝑘𝑘 − 𝑎𝑎𝑘𝑘) + 𝑟𝑟2−1(𝑙𝑙𝑘𝑘 − 𝑏𝑏𝑘𝑘) 
𝑡𝑡𝑘𝑘 = 𝑏𝑏𝑘𝑘 − 𝐿𝐿𝑎𝑎𝑘𝑘 
𝜏𝜏𝑘𝑘 = ‖𝑠𝑠𝑘𝑘‖2 + ‖𝑡𝑡𝑘𝑘‖2 
 𝑖𝑖𝑖𝑖 𝜏𝜏𝑘𝑘 = 0 
 𝑥𝑥∗ = 𝑎𝑎𝑘𝑘 

𝑣𝑣∗ = 𝑣𝑣∗ + 𝑟𝑟2−1(𝑙𝑙𝑘𝑘 − 𝑏𝑏𝑘𝑘) 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

𝑒𝑒𝑒𝑒𝑒𝑒 
𝑖𝑖𝑖𝑖 𝜏𝜏𝑘𝑘 ≠ 0 
 𝜃𝜃𝑘𝑘 = 𝜆𝜆𝑘𝑘(𝑟𝑟1−1‖𝑥𝑥𝑘𝑘 − 𝑎𝑎𝑘𝑘‖2 + 𝑟𝑟2−1‖𝑙𝑙𝑘𝑘 − 𝑏𝑏𝑘𝑘‖2)/𝜏𝜏𝑘𝑘 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝜃𝜃𝑘𝑘𝑠𝑠𝑘𝑘 
𝑣𝑣𝑘𝑘+1 = 𝑣𝑣𝑘𝑘 − 𝜃𝜃𝑘𝑘𝑡𝑡𝑘𝑘 

𝑒𝑒𝑒𝑒𝑒𝑒 
𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑥𝑥𝑘𝑘+1  

IV. SIMULATION

The digital simulation model used in the experiment is
the forbild head phantom, as shown in Fig.5 (a) , with the
size 512×512. The measurement data is Uniform sampled
at 512 views between 0 to 180 degrees with a detector with
640 bins. Noise is added with the model in section II, where
N0 = 3000. The convergence of PPD, the verification of ε ,
and the reconstruction experiment with regularization terms
of TV [11], L0TV [12] and BM3D [13] are performed in
simulation.

A. Convergence analysis of PPD

The four parameters, namely p, r1, r2 and λ need
to be determined in algorithm 1 for problem PBx (xini) =
argmin

x
lBy (ASx)+ 1

2p ‖x− xini‖2
2, Select the estimated range

in section II as ε1 = 401.9 ε2 = 407.6 and set xini = 0.
The experiments are performed with the parameters p, r1,
r2, λ as [2,5,1,1], [2,1,5,1], [2,5,5,1], [20,1,1,1], [0.5,1,1,1],
[2,1,1,0.5], [2,5,1,1.75], respectively.
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Fig. 1. Convergence curve of the result. The above is the curve of distance
error, and the below is the distance of adjacent iteration points.

Fig.1(a) (b) are the curves of ‖Asxk− yS‖2 and
‖xk+1− xk ‖2 in the iterative process, respectively. The con-
vergence curves drop rapidly in the first 15 iterations and
then gradually reach the convergence result. The curves are
very similar, and only P4 and P7 are somewhat different. P4
shows that a larger p will make the convergence unstable;

2783



According to the result of P7, for an λ close to 2, the
curve will only slowly converge in the first few iterations.
Different parameters have little effect on the convergence
speed of PPD. When xini is at {x|‖ASx− yS‖2 < ε1}, x1 will
be at {x|‖ASx− yS‖2 > ε2} after the first iteration, and it will
still converge to By. The above shows that PPD has good
robustness and convergence speed.

B. Validation of parameter ε selection

To validate whether the estimated constraint range is
appropriate, solve the projections of different Bx from
three starting points, namely the origin(O1), a random
point(O2), and FBP reconstruction results of noise-free
data(O3). Set different constraint ranges as εk

i = 20k+ εest
i

k = −10,−9...40,i = 1,2(εest
i is the estimated value). Take

Tk =
εk

1+εk
2

2 and signal-to-noise ratio (SNR) as coordinate and
evaluation index, respectively.
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Fig. 2. The T-SNR curve of the result

Fig.2 shows the resulting T-SNR curve. The results of O1
and O3 both achieve the maximum value at T est , and O2
achieves the maximum value at T−3, but it is not much differ-
ent from the result at T est (SNR−3=9.95dB,SNR0=9.81dB).
The starting point makes the curves differ greatly, and the
starting point of O3 is closest to the true value while the
starting point of O2 is background noise.

Fig. 3. Reconstructed image of zero under different constraints. (a)T−10,
(b) T est , (c) T10, (d) T20, (e) T30, (f) T40

Fig.3 shows the result image of O1. As the value of T
decreases, the image gradually changes from blurry to clear
( from Fig.3(f) to (b) ), and Fig.3(b) shows the image at T est ,

which has the best quality. But as T continues to decrease,
the image appears a lot of noise( In Fig.3, (a) has more noise
than (b) ). And in the curve in Fig.2, O2 and O3 have similar
SNR at T < 300. When the constraint range is too close to y,
each x contains the noise in y and the reconstruction accuracy
is low.At this time, the regularization term cannot denoise the
reconstructed image either. The above results indicate that the
estimation result in Section II is the optimal value.

C. Reconstruction result

Use TV, L0TV, BM3D for image reconstruction, and
set data fidelity term as described in Section II. Select
appropriate regularization term denoising parameters and set
the parameters as rTV = 1/15, rL0TV = 0.01, σBM3D = 20.
The DRS method iterates 50 times for reconstruction, sets
the initial point s1 as a point in Bx, and, for fast calculation,
sets the maximum number of iterations of the PPD to 50.
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Fig. 4. Iterative convergence analysis. (a) is the SNR curve, (b) is the
distance curve of adjacent iteration points.

Fig.4 shows the convergence curves of the three recon-
struction methods. All three methods can converge in about
15 iterations, and the convergence speed is similar. The
three regularization terms are the convex regularization term,
nonconvex regularization term, and locally similar filtering
operation, respectively. The results show that the algorithm
can converge stably for different types of regularization
terms. The step size has a specific influence on the recon-
struction result for the nonconvex regularization term. If the
step size is within a certain range in the experiment, L0TV
will converge to the same point. In large difference in step
size, L0TV will have different convergence results, but the
two results are very similar.

Fig.5 is the reconstructed image, and FBP reconstructed
image as a comparison. The FBP reconstructed image con-
tains a lot of noise, and the other three reconstruction
methods have different effects. Bx is the initial point s1 of
reconstruction(In other words, Bx is the reconstruction image
without regularization). L0TV can retain the edges, but the
small structure may disappear; TV makes the overall image
smooth, not suitable for this image than L0TV. BM3D can
maintain a clear structure, but there is noise in flat areas. The
result of Bx is closer to the real ground than FBP. L0TV tends
to ”smooth” the image, that is to make less gradient changes.
Therefore, in L0TV result, the flat area has less noise, but the
point structure on the left is removed. But if there is enough
sampling angle and number of incident electrons, it can still
be reconstructed.
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Fig. 5. Experimental reconstruction results. The reconstruction methods
are (a)ground true (b)Bx (c)FBP (d)TV, (e)L0TV, (f)BM3D respectively. the
display window is [0,1.8]

TABLE I
EVALUATION OF RECONSTRUCTION RESULTS

SNR(dB) SSIM

FBP 6.9143 0.2486
Bx 15.5425 0.5653
TV 18.7735 0.9026

L0TV 21.5757 0.9556
BM3D 19.9181 0.9169

Table I shows the evaluation of the reconstruction results
by SNR and SSIM. The index of Bx is significantly better
than FBP, which indicates the accuracy of the solution in the
data fidelity constraint set.The indicators of TV, L0TV, and
BM3D are better than Bx, and the regularization term can
further improve the reconstruction quality. The performance
of TV, L0TV, and BM3D are different, and the choice of reg-
ularization term depends on the nature of the reconstructed
image.

V. CONCLUSIONS AND DISCUSSION

This paper proposes a method for estimating the range of
constrained data fidelity term and solve the reconstruction
problem with DRS and PPD. Regarding the constraint func-
tion as a function of the random variable of the measurement
data, estimate the distribution of constraint function with the
second-order Taylor expansion, and determine the constraint
range of the constraint according to the distribution. The
DRS method decomposes the reconstruction problem, and
the data fidelity term and regularization term are in differ-
ent subproblems. PPD is used to solve the subproblem of
data fidelity term, and different regularization terms can be
flexibly combined with the proposed reconstruction method.
The three regularization terms TV, L0TV, and BM3D are
used for reconstruction simulation. The results show that the
reconstruction quality of the three regularizations is better
than FBP with SNR and SSIM as indicators. The advantage
of this method is that different regularization terms can be
easily applied for reconstruction, and the parameter can be

determined only by the number of incident photons and
scanning information.

The data fidelity term adopts a weighted form to balance
the difference in noise level between X-rays. According
to the distribution estimation of D, two thresholds of the
constraint are determined. Each solution in the constraint is
very likely to be close to the true value, thus ensuring the
lowest reconstruction accuracy.

Three regularization terms with different properties are
used in reconstruction experiments to verify convergence.
The regularization term represents the prior knowledge of the
image, and for a certain data fidelity term, it determines the
reconstruction result. In theory, for nonconvex regularization
terms, the step size also affects the reconstruction results.
In practice, due to the constrained data fidelity term, the
reconstruction results of the same regularization term with
different step sizes are similar. For a regularization term,
especially in nonconvex, choosing the best step size, that is,
to achieve global convergence, still needs further research.
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