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Abstract— Poor understanding of brain recovery after injury,
sparsity of evaluations and limited availability of healthcare
services hinders the success of neurorehabilitation programs
in rural communities. The availability of neuroimaging ca-
pacities in remote communities can alleviate this scenario
supporting neurorehabilitation programs in remote settings.
This research aims at building a multimodal EEG-fNIRS
neuroimaging platform deployable to rural communities to
support neurorehabilitation efforts. A Raspberry Pi 4 is chosen
as the CPU for the platform responsible for presenting the
neurorehabilitation stimuli, acquiring, processing and storing
concurrent neuroimaging records as well as the proper synchro-
nization between the neuroimaging streams. We present here
two experiments to assess the feasibility and characterization
of the Raspberry Pi as the core for a multimodal EEG-fNIRS
neuroimaging platform; one over controlled conditions using
a combination of synthetic and real data, and another from
a full test during resting state. CPU usage, RAM usage and
operation temperature were measured during the tests with
mean operational records below 40% for CPU cores, 13.6%
for memory and 58.85 ◦ C for temperatures. Package loss was
inexistent on synthetic data and negligible on experimental data.
Current consumption can be satisfied with a 1000 mAh 5V
battery. The Raspberry Pi 4 was able to cope with the required
workload in conditions of operation similar to those needed to
support a neurorehabilitation evaluation.

I. INTRODUCTION

Stroke represents a major cause of disability world-wide
requiring continuum of care for survivors. Stroke imposes
a handicap to those affected. Neurorehabilitation programs
are aimed to reduce dependency of stroke survivors on
third parties and afford them independent living. These pro-
grams foster after-injury plasticity and sheering the brain’s
functional reorganization. The success of these programs is
constrained by (a) our limited understanding of brain reor-
ganization mechanisms after the insult and (b) the sparsity
of behavioural evaluations recorded during ward visits. In
addition, neurorehabilitation programs are extremely costly
[1] and require highly specialized carers that aren’t always
available in rural settings, in practice being almost unafford-
able and unreachable to large portion of the population of
developing countries.
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Electroencephalography (EEG) and functional near in-
frared spectroscopy (NIRS) are complementary neuroimag-
ing modalities to interrogate brain activity and associated
haemodynamics respectively. They are both portable, non-
invasive and cheaper than MRI, MEG or PET. EEG and
fNIRS are now viable in naturalistic settings and their cost is
a fraction of what used to be [2], [3]. Combined multimodal
operation is possible [4] and has been used before to provide
insights of neurophysiological processes occurring during
(gait) neurorehabilitation after stroke [5]. However, operation
and interpretation of readings require skilled personnel. Stud-
ies have demonstrated the benefits of access to neuroimaging
tools in rural settings in middle- and low-income countries
for purposes other than neurorehabilitation [6]. This research
intends to ameliorate the demands of neurorehabilitation
assessment by affording a low-cost smart EEG-NIRS station
that can be deployed to rural communities. Smart EEG-
NIRS stations can yield observations and interpretations for
neurorehabilitation beyond current proxy behavioural scores,
and at a cost which can be made affordable from first
level hospitals to rural clinics. Embedded artificial intelli-
gence (AI) can improve our interpretability of concurrent
EEG-NIRS recordings in the recovering brain and reduce
instrumental costs, enhancing post-stroke monitoring, in-
creasing affordability, and boosting accessibility to otherwise
marginalized population.

Here, we test the feasibility of a Raspberry Pi 4 to act as
the core of a low-cost multimodal EEG-NIRS neuroimaging
station. We show that the Raspberry Pi 4 is capable of dealing
with presenting the neurorehabilitation evaluation stimuli,
and the concurrent acquisition of data from streaming EEG
and fNIRS devices as well as being responsible for synchro-
nization and annotation of data all at once, whilst still leaving
sufficient computational power to handle AI at a later stage.

II. METHODS

The multimodal EEG-fNIRS neuroimaging platform is
based on a Raspberry Pi 4 with 4GB of RAM and a
Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) pro-
cessor running Raspberry Pi OS 10.0 (previously Raspian).
A desktop version of the operating system is necessary for
supporting PsychoPy. For the experiments presented here,
for imaging we have used a HIAmp EEG 128 channel
system (g.tec, Austria) -although not all channels were used-
and a NIRScout (NIRx, USA), a modular, and robust lab-
based fNIRS device with a total of 16 laser sources with 2
wavelengths (750mm, and 860mm) and 8 detectors set up
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(a) Platform (b) PsychoPy on Raspberry

Fig. 1: Multimodal EEG-fNIRS Platform. (a) Raspberry
based setup. (b) PsychoPy running on the Raspberry pi.

as 24 channels for all the experiments on this work. These
middle range imaging devices will be substituted by low cost
alternatives (e.g. OpenBCI and NinjaNIRS) later. The setup
diagram is depicted on Fig. 1a.

A. PsychoPy for stimuli presentation in a Raspberry Pi

Experimental stimuli are presented using PsychoPy [7] to
create and project the stimuli to the subject. The Raspberry
Pi is not designed to manage heavy load graphics. This
represents a problem for the most recent version of PsychoPy
which relies on the capacity of heavy graphics handling from
the hardware. Hence, an older PsychoPy (version 1.83.04)
was compiled for the Raspberry pi (Fig. 1b). The OpenGL
driver was manually activated before operating it.

Experimental video stimuli are divided in 2 groups; stimuli
oriented to neurorehabilitation assessment of the hand based
on the corresponding Fugl-Meyer sub-scale (FMA) [8]; and
those oriented to maintain attention and elicit motivation and
therapy adherence – Emotion Elicitation (EE). The videos
accompanying the FMA stimuli were recorded in house. The
EE set of stimuli are part of the affective computing dataset
MAHNOB-HCI [9]. All videos were made to last exactly 20
seconds.

B. Data Synchronization

For trigger synchronization, a parallel port replicator
(PPR) was used (Fig. 2a). The box takes an 8-bit word
through the pins marked on Fig. 2a, and replicates it to
the four parallel port outputs. The PPR synchronization box
accepts Transistor–Transistor Logic (TTL) level signals. A
voltage level ranging from 1.8 to 5 volts can be used to
send a logic 1 to the box. The Raspberry Pi 4 model B has
a 40 pin header from which only 24 pins corresponds to
the General purpose Input/Output (GPIO) available for its
use through code. The schematic diagram of the connection
between the Raspberry Pi and the synchronization box is
shown on Fig. 2b. GPIO pins from the Raspberry pi are
capable of 3.3v outputs but with very low currents limited
to 50mA. However, the resistors on the input stage of the
PPR and its external power supply is enough to limit the
current out from the Raspberry Pi.

GPIO pins can be controlled with Python scripts. There
are already a few libraries developed for this purpose. We
opted for the RPi.GPIO which provides a class to control

(a) (b)

Fig. 2: (a) Synchronization box: A) Top view B) Back view
and pins for 8-bit word. (b) Connection to the Raspberry Pi.

the GPIO on a Raspberry Pi. A bespoken Python script
using this library controls these pins through PsychoPy. An
example of this script can be founded on the GitHub page
Each stimuli video (6 for FMA, 5 for EE) has a unique
identifier represented as a hexadecimal number (0x01, . . . ,
0x0B). Two additional identifiers were added to mark the
beginning (0x0C) and the end (0x0D) of the experiment.

C. Lab Streaming Layer for data acquisition.

We chose Lab Streaming Layer (LSL) for data acquisition.
Python scripts also available at GitHub were developed
for the data acquisition from our fNIRS and EEG set up
and visualization communicating with PsychoPy. The data
coming from the devices through a local network is saved on
a text file containing the timestamps, the imaging data itself
and the synchronization triggers. An exemplary test running
LSL with the PsychoPy experiment is shown in Fig. 3a.

III. EXPERIMENTS AND RESULTS

A. Performance during FMA assessment load

A test was performed to measure the use of resources dur-
ing acquisition. The following performance variables were
observed: CPU usage from each core, amount of RAM
memory used and CPU temperature throughout the entire
experiment. Synthetic EEG (random) data and real experi-
mental data (NIRScout data stream) was collected during a
20 minute period. Performance variables were sampled at
0.2 Hz. This sample frequency is compatible with the buffer

(a) (b)

Fig. 3: (a) Raspberry running the PsychoPy based experiment
(NeeGo screen) along with data acquisition of data streams
simulating EEG and fNIRS signals (2nd screen only used
for demonstration purposes). (b) Resting state test.
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Fig. 4: CPU usage test results from each Raspberry core and
its average value on psychopy projection experiment

time from the Raspberry Pi. The test results are depicted on
Figures 4, 5a and 5b.

In terms of memory, Fig. 5a shows that the RAM usage
never rises over 560 Mb and has an average usage of 520
Mb representing 13.6% of the 4 Gb of RAM available.

The Raspberry Pi 4 is designed to work up to 85oC as
a critical point. Operating close or above this point will
indicate the need for an additional cooling system to the
platform. As shown in Fig. 5b, the CPU temperature never
raised over 61oC with an average temperature of 58.85oC
well below the critical point. However, once additional anal-
ysis operations are added this value is expected to increase.

B. Performance during resting state load

Three resting state experimental tests were also carried
out. Testing on resting state allow to discern what is strictly
attributable to the FMA assessment stimuli separately. Dur-
ing these sessions, the subject remained in a resting stage
with eyes closed for a 5 minutes period, without any stimuli
projected (Fig. 3b). The Raspberry pi only task was capturing
the two data streams; the fNIRS at 10Hz and the ECG at
512Hz.

Figure 6 shows the average results of CPU load for
each core during the resting state. All single cores stayed
below 20% load and the average usage was below 6%.
This represents about half of CPU load compared to the
FMA test where the stimuli is presented. RAM memory
usage (Fig. 7a) and CPU operation temperature (Fig. 7b)
also decreased accordingly. That is, the stimuli presentation

(a) (b)

Fig. 5: Performance during test on synthetic data. (a) RAM
usage (blue) and its average value (red). (b) CPU temperature
(blue) and its average value (red). (Best seen in color.)

Fig. 6: CPU usage test results from each Raspberry core and
its average value during resting stage test.

and synchronization operations take almost half of the oper-
ational demands.

(a) (b)

Fig. 7: Performance during resting state tests. (a) RAM usage
(blue) and its average value (red). (b) CPU temperature (blue)
and its average value (red). (Best seen in color.)

C. System load drop

An additional test was performed with the Raspberry only
projecting the Psychopy stimuli without LSL communication
corresponding to the system load drop from the FMA test
(Stimuli projection and acquisition) to the resting stage test.
The result of this test was compared to the FMA test. CPU
load, RAM usage and temperature were measured in the
same way as in the resting state test. A 50% decrease on CPU
load, a 63% decrease on RAM usage, and the temperature
dropped of one degree with respect to the FMA experiment.

D. Package loss assessment

In any communication systems there is always risk of
package loss. A test was carried out to establish whether the
Raspberry Pi can handle the communication with minimal
or no package loss.

For the fNIRS, two data sets (SET001 and SET002)
were simultaneously acquired by the Raspberry Pi through
the communication system, and two additional computers
directly hosting the neuroimaging devices following the full
experimental design (i.e. projection of stimuli, synchroniza-
tion and 2 data stream acquisition all at once). We compared
the data recorded by the Raspberry Pi to those data acquired
directly by the neuroimaging host computers to evaluate
possible data lost on the streaming. These data sets were
acquired with a 6.25 sampling rate with 44 signals (22
channels with a pair of signals -two wavelengths- for each
channel). SET001 does not include the trigger marks while
SET002 does. Exhaustive sample by sample comparison
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Fig. 8: Hemoglobin response from one fNIRS channel from
SET001. The perfect overlapping between both records, host
and raspberry Pi, is obvious demonstrating no loss of data.

from every sample for each channel was performed to detect
any data loss. The Raspberry Pi successfully recorded all
data without a single lost due to streaming in any of the data
sets. For exemplary purposes, Fig 8 shows a comparison
of the first channel from SET001 acquired through the
host computer to the ones acquired by the Raspberry via
LSL. Both datasets from the Raspberry as well as the host
computer can be found in the OSF repository.

For EEG, 32 random signals simulated EEG-like records.
These samples were sent through LSL to the Raspberry
Pi. The sampling rate of the stream was raised on power
of 2 steps from 128 Hz until 4096 Hz. Ten data files for
each sample rate were sent and received after this process
to account for variability in performance due to potential
varying operating conditions. The values sent on every file
were of type double of 64 bits. The data files acquired by
the Raspberry were then compared to the original streamed
ones on a sample by sample to quantify potential loss of data
as above. Only two losses of 3 and 6 samples were detected
on two files due to connection errors, a condition that can
be detected on the fly.

E. Current consumption

For deployment to rural environments, current consump-
tion is critical. A current consumption test was performed
following the same methodology that in subsection III-A,
as shown in Fig. 9 and in subsection III-B. Fig. 10 shows
occasional current spikes. These spikes occurred during EE
stimuli and were due to audio reproduction. Despite the
spikes, current consumption never raised over 950 mA.
This current demand can be satisfied with a 1000 mAh 5V
battery for a FMA assessment measurement (20 minutes). As
expected, Fig. 10 depicts a consumption drop of almost half
percent with respect to the complete experiment, showing
that most of Raspberry power is used for stimuli projection
and not data acquisition

IV. CONCLUSIONS

The proposed multimodal EEG-fNIRS platform based
on Raspberry Pi can successfully render the experimental
stimulus using PsychoPy whilst concurrently communicating
with the fNIRS and EEG devices using the LSL network

Fig. 9: Raspberry current consumption (red line). Vertical
coloured bands indicate the different stimuli.

Fig. 10: Raspberry current consumption (red line). Average
current value (blue line).

protocol to acquire the data. The Raspberry core demon-
strated sufficient capacity to handle the operational demands
that would occur during a Fugl-Meyer neurorehabilitation
assessment.

While we develop a direct communication with the fNIRS
device, for these tests, the NIRStar software was run in a
Windows XP virtual machine inside the Raspberry Pi. The
next steps are substituting the neuroimaging devices for their
low cost counterparts and adding the AI module for signal
analysis.
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