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Abstract— Ocular surface disorder is one of common and
prevalence eye diseases and complex to be recognized accu-
rately. This work presents automatic classification of ocular
surface disorders in accordance with densely connected convo-
lutional networks and smartphone imaging. We use various
smartphone cameras to collect clinical images that contain
normal and abnormal, and modify end-to-end densely con-
nected convolutional networks that use a hybrid unit to learn
more diverse features, significantly reducing the network depth,
the total number of parameters and the float calculation.
The validation results demonstrate that our proposed method
provides a promising and effective strategy to accurately screen
ocular surface disorders. In particular, our deeply learned
smartphone photographs based classification method achieved
an average automatic recognition accuracy of 90.6%, while it is
conveniently used by patients and integrated into smartphone
applications for automatic patient-self screening ocular surface
diseases without seeing a doctor in person in a hospital.

I. INTRODUCTION

Ocular surface disease (OSD) is a common eye disease
related to eye surface structures including the cornea, con-
junctiva and eyelids [1]. The prevalence of OSDs diagnosed
on symptoms ranges from 7% to 52% worldwide [2]. Most
of OSDs such as abnormal conjunctiva and cornea are
commonly undiagnosed due to lack of standard description
of symptoms and too many subtypes of OSD in practice.
More unfortunately, OSD patients of all ages can develop
photophobia, intermittent blurred vision, pain, limited ability
to perform daily activities, and even depression in some cases
[1], [3]. Therefore, it is important to accurately recognize
OSDs at the early stage and treat them in an appropriate
way without OSD exacerbation.

Ophthalmologists usually use typical medical instruments
to examine ocular surface disease at the hospital. Corneal
topography is the earliest non-invasive imaging technique to
detect the cornea [4]. Clinical slit-lamp is most commonly
performed to check OSD [5]. Optical coherence tomography
is a powerful imaging method to examine various ocular
conditions [6]. However, these clinical medical instruments
are expensive and only available at the hospital. Ophthalmic
outpatients usually require higher costs and longer visit
durations [7]. On the other hand, a tremendous amount of
ophthalmic outpatients (most of them are nonemergency eye
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concerns) bring huge labor and mental burden to ophthalmol-
ogists, resulting in screening thoroughly insufficient to spare
patients these diseases. Therefore, ophthalmologists require
an efficient tool or strategy to assist them to accurately and
thoroughly screen OSDs beyond ophthalmology clinics.

In recent years, deep learning has been widely applied in
medical image analysis, especially in automatic diagnosis
diseases. Many common automatic classification network
frameworks such as VggNet [8], ResNet [9], and DenseNet
[10] have achieved great success. In addition, to better embed
mobile devices, some advanced lightweight network like
ShuffleNet [11], MobileNets [12], [13], and GhostNet [14]
have also been developed. Hence, it is a promising strategy
to use deep learning for recognizing ocular surface diseases
automatically.

Based on these clinical problems and facts discussed
above, this work aims to establish an automatic recogni-
tion framework to efficiently and effectively screen OSDs.
Several highlights of this work are clarified as follows.
Technically, we modify densely connected convolutional
network for reducing the amount of parameters and cal-
culation. We reduce the depth of networks and use the
hybrid unit instead of standard convolution to learn more
diverse features of ocular surface image that have enough
diversity and flexibility to meet the needs of recognizing
ocular surface diseases. On the other hand, we introduce
smartphone cameras that are easy for OSD patients to take
images, enabling patients themselves to conveniently and
timely monitor the development of OSDs. Additionally, our
efficient and effective strategy provides ophthalmologists
with a promising way to reduce their labor and mental load,
as well as cost and visit duration to improve patient efficiency
in ophthalmology clinics.

II. APPROACHES

Fig. 1 details our deeply learned smartphone image oc-
ular surface disease classification method on the basis of
modifying the DenseNet architecture. We basically follow
the architecture of DenseNet that consists of an initial
convolution layer, three dense blocks, two transition blocks
and a classification layer [10].

A. Dense Block

Different from the original DenseNet extracting single
features, each dense block contains some hybrid units rather
than a standard convolution (Conv). The hybrid unit consists
of a 3 × 3 standard convolution and a 3 × 3 depthwise
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Fig. 1: Architecture of our proposed method based on DenseNet. The hybrid unit consists of a standard convolution (Conv)
and a depthwise separable convolution (Dw).

separable convolutions (Dw) [12]. Each output is fixed to
k (k denotes the growth rate) feature map that indicates the
amount of new information contributed by this operation.
These ouputs are concatenated. Therefore, each hybrid unit
can learn the 2k feature map than the k feature map be-
fore. After extracting features, there will be a set of batch
normalization (BN), rectified linear unit (ReLU), and 1× 1
Conv. The BN layer can make overall sample distribution
stable, limit the fluctuation of gradient to a certain level
and improve the speed and performance of networks[15].
ReLU is a nonlinear activation function. The 1× 1 kernel is
used to reduce the number of channels in order to improve
computational efficiency.

B. Transition Block
Each transition block includes four parts: BN, ReLU, a

convolution layer, and an average pooling layer. Transition
block is to connect two adjacent dense blocks and reduce
the size and number of feature maps to improve efficiency.
A convolution layer implemented by 1×1 kernel reduces the
number of channels, while a pooling layer is implemented
by 2× 2 kernel to average pool.

In our experiments, we classify OSDs based on the
DenseNet structure. The initial convolution layer consists of
convolutions of 7×7 kernel, BN, ReLU, and max-pooling of
3×3 kernel. Three dense blocks connected by two transition
blocks are used to learn features. Three dense blocks contain
2, 5 and 8 hybrid units respectively. The classification layer
is to compress 359-channel feature maps to 2-channel for
2 classes. At the end, a softmax function estimates the
probability of a photo classified into either l or 0.

III. EXPERIMENTS
A. Data and Training

In data acquisition, three ophthalmologists used different
smartphones with various camera sizes (e.g., 3648 × 2736,

Fig. 2: Train loss and test error of OSDs recognition.

4032× 3024, 5120× 3840) to acquire ocular surface images
from over 1000 patients (with their consents). All the ocular
surface images were collected under the following condi-
tions: A typical distance (less than 20.0 cm) between eyes
and smartphones, almost consistent lighting, and different
viewing angles. Each ocular surface smartphone image was
discussed and labeled together by three ophthalmologists.
Eventually, we obtained 953 annotated ocular surface smart-
phone images including 467 normal and 486 abnormal
images showing 12 types of ocular surface diseases.

We randomly divided all the annotated data into training
and testing by a ratio of 7 : 3. We resized all images to 682×
512 in our experiments. We did data augmentation by random
flipping and cropping to alleviate the problem of a small
dataset in training. While our dense connection can save each
layer information at the maximum level, which is helpful
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Fig. 3: Correctly recognized ocular surface diseases: (a) nor-
mal and (b) abnormal cornea-conjunctiva and (c) abnormal
conjunctiva and (d) abnormal cornea.

for training [16]. The hyper-parameter k was set to 12 (our
experiments showed that higher accuracy can be obtained
than other smaller or larger ones). We used a logistic loss
function to train model which was optimized by stochastic
gradient descent. We trained our network for 200 epochs
with a batch size of 16 and the initial learning rate was set
to 0.15 and lower by 10 times at epoch 100 and 150. The
training was performed by a momentum of 0.9. Fig. 2 shows
the train loss and test error of recognizing OSDs. The speed
of the training decline is quite fast at the early stage and the
training procedure was gradually converged after 100 epochs.

B. Performance

Fig. 3 displays the correctly recognized cases of using our
automatic OSD classification method. The confusion matrix
(Fig. 4) demonstrates that 11 normal cases were misjudged
as abnormal, while 16 photos with ocular suface diseases
were incorrectly classified as normal. The average area under
the receiver operating characteristic curve (AUC) of OSDs’
recognition was about 0.96. We also calculated the specificity
92.20%, precision 92.14%, recall 88.97%, F1 score 90.53%
and accuracy 90.56%.

C. Comparison

We compared the results of automatic recognition of
ocular surface diseases with other state-of-the-art deep learn-
ing methods, including deep convolutional neural network
like VggNet [8], ResNet [9] and DenseNet-121 [10], and
the lightweight networks like ShuffleNet [11], MobileNet
series [12], [13], and GhostNet [14]. The results are sum-
marized in Table I. For a fair comparison, all parameters
are identical to our method. Our method only has 0.31M
parameters and 1.94B FLOPs with a recognition accuracy
of 90.56%. Our method reduces lots of parameters and
FLOPs and consistently outperforms than VggNet, ResNet
and DenseNet. Compared with the lightweight networks, our

Fig. 4: The confusion matrix of our classification method.

network achieves best performance after using the hybrid
units to learn features and dense connection. Our approach
also shows quite competitive results on number of parameters
and computation. In addition, our hybrid units can improve
the recognition accuracy to 90.56% that is much better than
only standard convolutions (87.76%).

TABLE I: Comparison of other state-of-the-art deep learning
methods for ocular surface diseases classification.

Method Params(M) FLOPs(B) Acc(%)

VggNet-19 [8] 139.58 135.53 N/A
ResNet-50 [9] 23.51 28.93 74.83

ResNet-101 [9] 42.50 55.06 87.41
DenseNet-121 [10] 0.60 2.68 89.86
ShuffleNet v2 [11] 1.26 1.04 83.22
MobileNet v1 [12] 3.21 4.06 83.92
MobileNet v2 [13] 2.23 2.20 87.06

GhostNet [14] 3.62 0.82 86.71
Ours (only Conv) 0.16 1.50 87.76
Ours (hybrid unit) 0.31 1.94 90.56

IV. DISCUSSION AND CONCLUSION

This work proposes automatic recognition of ocular sur-
face diseases in accordance with smartphone images and
densely connected neural networks. The experimental results
demonstrate that our approach completely outperforms cur-
rently available network architectures and achieves a high
accuracy of 90.6%, providing a promising way to precisely
screen and monitor ocular surface diseases without going to
hospital.

While it is generally hard to establish deeper convolutional
neural networks with many operations on mobile phones due
to their limited computation power, DenseNet can reduce
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parameters by dense connections and feature reuses [10].
We follow the basic architecture of DenseNet and reduce
the depth of the network, greatly reducing the amount
of parameters and FLOPs. Meanwhile, we use a light-
weight depthwise separable convolution, which can learn
more diverse image features without increasing too much
computation. We visualize the feature maps learned by the
hybrid units and only standard convolution in the first layer
of the first dense block (Fig. 5). Although the generated
feature maps are extracted from the primary layer, there are
significant differences between them, which implies that the
generated features by hybrid units have enough diversity and
flexibility to meet the needs of recognizing ocular surface
diseases.

(a) The standard convolution (b) The hybrid unit

Fig. 5: Comparison of the feature maps generated from
the first layer of the first dense block in the only standard
convolution and the hybrid unit, respectively.

(a) conjunctival pigmented nevus (b) conjunctival congestion

(c) normal (d) normal

Fig. 6: Incorrectly classified ocular surface diseases.

Although our method works well, it still has several
potential limitations. First, training samples are uneven.
We did not have much training samples. Ocular surface
disease is generally a complex and prevalent eye disorder
with more than 150 subtypes in clinical practice. We will
collect massive smartphone images to deal with this problem.

Next, there are some unavoidable image problems in Fig. 6.
Fig. 6(a) is conjunctival pigmented nevus whose diseased
region is small. Fig. 6(b) is conjunctival congestion at Level
1 that is similar to the normal image. Fig. 6(c) is out of focus
blurring. Fig. 6(d) is the obvious reflection in the corneal
region. These problematic images undoubtedly deteriorate
the performance of the model training useful information,
resulting in a classification failure. We can consider taking a
short video at different angles to supplement information for
enhancing the recognition performance of networks. In future
work, we will further validate our method in smartphone
applications.
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