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Abstract— In this paper, we proposed and validated a
multi-task based deep learning method for simultaneously
segmenting the foveal avascular zone (FAZ) and classifying
three ocular disease related states (normal, diabetic, and
myopia) utilizing optical coherence tomography angiography
(OCTA) images. The essential motivation of this work is
that reliable predictions on disease states may be made
based on features extracted from a segmentation network, by
sharing a same encoder between the classification network
and the segmentation network. In this study, a cotraining
network structure was designed for simultaneous ocular
disease discrimination and FAZ segmentation. Specifically, we
made use of a classification head following a segmentation
network’s encoder, so that the classification branch used the
feature information extracted in the segmentation branch to
improve the classification results. The performance of our
proposed network structure has been tested and validated
on the FAZID dataset, with the best Dice and Jaccard being
0.9031±0.0772 and 0.8302±0.0990 for FAZ segmentation, and
the best Accuracy and Kappa being 0.7533 and 0.6282 for
classifying three ocular disease related states.

Clinical Relevance— This work provides a useful tool for
segmenting FAZ and discriminating three ocular disease related
states utilizing OCTA images, which has a great clinical
potential in ocular disease screening and biomarker delivering.

I. INTRODUCTION

Optical coherence tomography angiography (OCTA) is a
diagnostic imaging technique based on optical principles.
It makes use of the blood flow information of the retinal
vasculature, displaying blood vessels from the inner limiting
membrane layer to the choroid layer at the capillary level
[1]. The foveal avascular zone (FAZ) is a capillary-free area
in the center of the macula, which has received significant
research interest in fluorescein angiographic analysis [2].
FAZ’s functionality in vision has been investigated, and its
size has been identified to be related to visual ability.

The size and shape of the FAZ in three ocular diseases
related states, namely normal, diabetic, and myopia, have
been intensively investigated. The FAZ area has shown sta-
tistically significant enlargement in diabetic eyes compared
to healthy ones [3]. Similarly, in myopic eyes, especially
those with a high degree, enlarged FAZ areas have been
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identified, with relatively reduced blood vessel diameters [4].
In such context, the FAZ morphology may provide essential
biomarkers for diabetic and myopia, which has great poten-
tial for clinical utility, especially when using OCTA images
(non-invasiveness, fast scanning speed, and high imaging
resolution). A necessary prerequisite for FAZ morphology
quantification is to have the FAZ region segmented out from
OCTA images.

Manually delineating the FAZ region is subjective and
tedious. Furthermore, due to the fuzzy edge information in
OCTA, it may lead to intra- and inter-variability between
experts. As such, automated FAZ segmentation methods
are needed. A representative automatic FAZ segmentation
algorithm employed vascular edge identification and mor-
phological closure, and the high correlation between manual
extracted and automated extracted area sizes identifies its
effectiveness [5]. However, its performance may be severely
affected by the presence of vessels. Deep learning-based
methods may possess better robustness and reliability, es-
pecially in biomedical image segmentation tasks [6].

In clinical practice, the OCTA images can be used for not
only FAZ segmentation but also ocular disease discrimination
[4] [7]. However, relevant work has been relatively rare in
utilizing OCTA images for automatically discriminating three
ocular disease related states, namely normal, diabetic, and
myopia.

Recently, multi-task learning has been found to achieve
superior performance in joint segmentation and classification
tasks, including such tasks on histopathology images [8] and
fundus images [9]. The reported superior performance on
data of different types has also revealed its data generaliza-
tion ability. Multi-task learning can effectively explore the
commonness and difference between different tasks.

In this paper, we propose a novel multi-task cotraining
network for joint FAZ segmentation and ocular disease
classification. We adopt an encoder-decoder structure for our
segmentation architecture, and a classification head is added
right after the encoder to predict disease states. We validated
the effectiveness of our proposed framework by comparing
its performance with that of each single task, namely con-
ducting segmentation and classification separately.

II. METHOD

Our overall framework builds upon a segmentation ar-
chitecture together with a classification head. The baseline
segmentation network can be any one with an encoder-
decoder structure, such as U-Net [10], U-Net++ [11] and
Deeplabv3+ [12]. Each baseline segmentation network is also
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Fig. 1. The overall framework of our proposed cotraining approach.

used for the single-task segmentation. The classification head
is connected after the encoder of the segmentation network.
For single-task classification, we choose major image recog-
nition networks including ResNet50 [13], ResNext50 [14]
and ResNest50 [15] for verfication. The overall framework
is shown in Figure 1.

A. Classification Head

The classification head is a module following the en-
coder of the segmentation network, designed specifically for
classification purpose. The last several layers that output
the predicted categories in a recognition network, such as
ResNet, consist of Global Average Pooling, Flatten, Linear,
and Activation layers. Our original classification head is also
designed based on this structure. However, the classifica-
tion head for the recognition network should use features
extracted from the encoder. For the cotraining network, the
features extracted from the encoder need to accommodate
the segmentation task, which might not be suitable for the
original classification head. As such, we propose a new clas-
sification head for the cotraining network, which consists of
one Global Average Pooling, one Flatten, two Max Pooling,
three Linear, and one Activation layers. Compared to the
original design, the proposed classification head has more
robust generalization and recognition abilities.

B. Multi-task Learning Architecture

For the segmentation task, the encoder focuses on features
of the FAZ region, including size, shape, and position. These
features are also useful for classification of our three ocular
disease related states. We add the classification head to
the end of the encoder to make categorical predictions.
To exploit the feature extraction ability, we replace the
original encoder of the segmentation network with the feature
extraction part of the recognition network. This creates the
new encoder of the cotraining network. The combination
of the encoder and the classification head builds up the
main structure for classification. The decoder of the network
remains the same as that used in the baseline segmentation
network. In this way, the classification process is able to

use the feature information for segmentation. Meanwhile,
the segmentation process also utilizes the between-category
differences used for optimizing the classification process.
Compared to each single task, multi-task learning makes
better use of complementary information by accommodating
two tasks simultaneously.

During the multi-task learning process, we initiate the
classification process after the segmentation process con-
verges to avoid over-weighting of the encoder. The objective
function for cotraining consists of two losses: Dice loss for
segmentation, represented as Lseg, and Cross-entropy loss for
classification, represented as Lcls. The total loss is a weighted
sum of the aforementioned two losses:

Ltotal = αLseg +βLcls, (1)

where α and β are two parameters that adjust the relative
weights. The initial values are set to be α = 1 and β = 0 to
make the segmentation process converge. Then the weights
are changed to be α = 0.5 and β = 0.5 to update both
processes.

C. Evaluation Metrics

We choose Dice and Jaccard to be our evaluation in-
dices for segmentation. For the classification task, the most
commonly used evaluation index is accuracy, representing
the proportion of correct predictions. However, the overall
prediction does not take into account data imbalance. To
avoid this issue, we employ Kappa [16] as another evaluation
index for classification.

III. RESULTS

A. Dataset

Our proposed method was evaluated on the Foveal Avascu-
lar Zone Image Database (FAZID) [17]. This dataset contains
304 OCTA images, including 88 normal images, 107 diabetic
images, and 109 myopia images, with corresponding ground
truth FAZ segmentation labels. All images were divided into
60% training data, 20% validation data, and 20% testing data
through five-fold cross-validation.
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The original image size is 416×416, with a physical size
of 6mm×6mm. Since the peripheral region might contain
noise, we cropped each image to be a physical size of
3mm×3mm from the center. This 3mm×3mm size is another
image size that is also commonly used in OCTA images. All
images were resized to be 192×192 after center cropping.
Data augmentation, including affine (with scale=1) and ran-
dom flipping were applied afterward, resulting in a total of
39050 images.

B. Implementation

The proposed pipeline was implemented by Segmentation
Models PyTorch [18] on a workstation equipped with RTX
3090. The batch size during training was set to be 32.
We used Adam to be our optimizer with a learning rate
of 0.0001. All networks were trained for 100 epochs in
total, with initial parameters pretrained on ImageNet. The
classification process was set to start updating after 30 epochs
to ensure the segmentation encoder had converged. The loss
function chosen for the training process was Dice loss for the
single-task segmentation and Cross-entropy for the single-
task classification.

C. Experimental Results

Tables 1 and 2 respectively tabulate quantitative compar-
isons of the proposed cotraining network with the single-
task classification network and the single-task segmentation
network. The “architecture” represents the segmentation net-
work and the “encoder” indicates the recognition network
that has been used to replace the original encoder of the
segmentation network. We nevertheless used the original
encoder for the single-task segmentation. ResNest50 was not
implemented as the “encoder” when the “architecture” was
Deeplabv3+ since ResNest did not support dilated convolu-
tions.

It can be observed that the proposed method performed
better than each single task approach, regardless of the
architecture and the encoder chosen. Collectively considering
the segmentation performance and the classification perfor-
mance, the architecture being U-Net or Deeplabv3+ and the
encoder being ResNet50 performed the best. However, the
three-category classification task is more challenging than the
FAZ segmentation task both manually and automatically, as
can be also seen from the numbers listed in the two tables, we
chose U-Net as the architecture and ResNet50 as the encoder
to be our finally-identified cotraining network since such a
combination provided the best classification performance. In
other words, we consider Accuracy and Kappa to be more
critical when evaluating the entire pipeline since they are
more sensitive than the two segmentation metrics, as can
be seen from their respective improvement degrees. This
cotraining network obtained a 9.57% increase in Accuracy
and a 19.14% increase in Kappa compared to the best single-
task classification results, indicating the effectiveness of the
proposed method for classification. Meanwhile, by adopt-
ing the proposed method, Dice also increased by 0.0115,
and Jaccard increased by 0.019 over the best single-task

TABLE I
COMPARISONS OF CLASSIFICATION RESULTS BETWEEN THE PROPOSED

COTRAINING NETWORK AND THE SINGLE-TASK CLASSIFICATION

NETWORK.

Classification Network Accuracy Kappa

Single-Task ResNet50 0.6875 0.5273
ResNext50 0.6711 0.502
ResNest50 0.6382 0.4508

Architecture Encoder Accuracy Kappa

Proposed U-Net ResNet50 0.7533 0.6282
ResNext50 0.7336 0.596
ResNest50 0.7231 0.5814

U-Net++ ResNet50 0.7368 0.6019
ResNext50 0.7434 0.6113
ResNest50 0.7434 0.6125

Deeplabv3+ ResNet50 0.7532 0.6265
ResNext50 0.7531 0.6228
ResNest50 - -

TABLE II
COMPARISONS OF SEGMENTATION RESULTS BETWEEN THE PROPOSED

COTRAINING NETWORK AND THE SINGLE-TASK SEGMENTATION

NETWORK.

Segmentation Network Dice Jaccard

Single-Task U-Net 0.8916±0.0726 0.8112±0.1041
U-Net++ 0.8898±0.0789 0.8093±0.1112
Deeplabv3+ 0.8810±0.0831 0.7956±0.1124

Architecture Encoder Dice Jaccard

Proposed U-Net ResNet50 0.8983±0.0660 0.8211±0.0957
ResNext50 0.8959±0.0798 0.8187±0.1029
ResNest50 0.9031±0.0772 0.8302±0.0990

U-Net++ ResNet50 0.8942±0.0825 0.8164±0.1064
ResNext50 0.8932±0.0862 0.8153±0.1102
ResNest50 0.8972±0.0816 0.8211±0.1054

Deeplabv3+ ResNet50 0.9010±0.0671 0.8256±0.0949
ResNext50 0.8978±0.0735 0.8213±0.1007
ResNest50 - -

segmentation results. These improvements suggest that the
FAZ segmentation provides structure information that helps
improve the classification. On the other hand, the category
information helps the network have a better feature iden-
tification ability and thus enhances the FAZ segmentation
performance.

During the training process, the performance of the pro-
posed method in segmentation reached its maximum before
the classification process started, and then a slight decrease
appeared. This could be explained that the encoder needed
to fit and balance two tasks simultaneously after initiating
the classification process.

Representative examples of the FAZ segmentation results
from different networks are shown in Figure 2. Clearly, the
results of the proposed network contain less error information
and are more correct on the boundary. We conjecture from
such comparisons that with an addition of the classification
branch, the encoder gained more useful boundary informa-
tion which boosted the segmentation results.

IV. CONCLUSION

In this paper, we proposed and validated a cotraining net-
work for segmenting the FAZ region and discriminating three
ocular disease related states from OCTA images. Compared
to a single-task classification network or a single-task seg-

2792



O
ri

g
in

al
 I

m
ag

e
U

-N
et

P
ro

p
o

se
d

(U
-N

et
 &

 R
es

n
et

5
0

)
G

ro
u

n
d

 T
ru

th

Fig. 2. Representative examples of the FAZ segmentation results, obtained from the single-task segmentation network (U-Net), the cotraining network
(U-Net & Resnet50), and the manual delineation (ground truth).

mentation work, the proposed pipeline achieved significant
improvements, especially for the classification task.

Our work still has limitations. With the classification
branch being introduced to the cotraining network, the
performance of the segmentation process decreased slightly
since the encoder needed to support two tasks simultane-
ously. This might be improved by introducing a new encoder
to the overall network architecture, employing a shared
weight with the decoder for separated weight optimization.
Without the interference of the classification task, the seg-
mentation performance may not decrease. This will be our
future research plan. Comparisons with other related works
are not included in this paper due to dataset difference, which
will nevertheless be explored in our future research work.
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