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Marc-André Blais and Moulay A. Akhloufi, Senior Member IEEE

Abstract— Disease detection using chest X-ray (CXR) images
is one of the most popular radiology methods to diagnose
diseases through a visual inspection of abnormal symptoms in
the lung region. A wide variety of diseases such as pneumonia,
heart failure and lung cancer can be detected using CXRs.
Although CXRs can show the symptoms of a variety of
diseases, detecting and manually classifying those diseases can
be difficult and time-consuming adding to clinicians’ work
burden. Research shows that nearly 90% of mistakes made in a
lung cancer diagnosis involved chest radiography. A variety of
algorithms and computer-assisted diagnosis tools (CAD) were
proposed to assist radiologists in the interpretation of medical
images to reduce diagnosis errors. In this work, we propose
a deep learning approach to screen multiple diseases using
more than 220,000 images from the CheXpert dataset. The
proposed binary relevance approach using Deep Convolutional
Neural Networks (CNNs) achieves high performance results
and outperforms past published work in this area.

Clinical relevance— This application can be used to support
physicians ans speed-up the diagnosis work. The proposed CAD
can increase the confidence in the diagnosis or suggest a second
opinion. The CAD can also be used in emergency situations
when a radiologist is not available immediately.

I. INTRODUCTION

Chest X-ray (CXR) is widely used in detecting a variety of
diseases affecting the chest area. This technology can help
doctors detect a variety of diseases, such as a pneumonia,
pulmonary edema, heart failure, lesions, lung cancer, tuber-
culosis, sarcoidosis, and pleural effusion. Furthermore, the
possibility of screening a disease (E.g. cancer) using a CXR
can augment the survival rate of patients as shown in various
studies [1], [2]. This makes the CXR highly useful given its
availability in almost all clinics compared to other methods.

However, when analyzing the results of the chest images,
a variety of components may complicate the analysis of the
images. The lack of specialized personnel to analyze the
images or fatigue can lead to errors The inconsistency in
diagnosis by radiologists can also be a major issue since the
interpretation of a CXR may differ from one specialist to
another.

A CAD system can be used to help reduce the burden
on radiologists while reducing the possibility of errors. A
variety of CAD systems have already proven their useful-
ness on an extensive array of diseases [3], [4], [5], [6].
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Furthermore, Convolutional Neural Networks (CNN) have
shown great promise in the medical field when it comes to
disease classification [7], [8], [9]. However, most of current
research focuses on a single label classification while fro
CXR we are interested in multi-label classification. Multi-
label classification is a situation where an image may have
one or more diseases present. This increases the complexity
of the problem since the algorithm must be able to detect
multiple diseases even if they overlap. Previous research
using the CheXpert dataset [10] explored the idea of multi-
label classification. In [11], the authors used a directed
acyclic graph (DAG) approach with deep CNN (DCNN) to
learn dependencies between classes.

II. RELATED WORK

Convolutional Neural Networks (CNN) have shown their
performance and proven their efficacy in detecting and
classifying diseases in a vast array of imaging modalities.
zhang et al. [12] were able to detect benign and malignant
breast tumors in shear-wave elastography with an accuracy
of 93.4% and an Area Under Curve (AUC) of 0.947 using
a deep learning approach. Similarly, Huynh et al. [7] used
deep learning to detect mammography tumors. Using transfer
learning, they trained the AlexNet architecture and were able
to achieve an AUC of 0.86. Mohsen et al. [13], proposed
the use of deep learning to classify brain tumors into four
categories (normal, glioblastoma, sarcoma and metastatic
bronchogenic carcinoma tumor). They were able to achieve a
mean classification accuracy of 96.97% and a mean AUC of
0.984. Finally, Han et al. [14] tested the ability of deep learn-
ing to classify and detect 12 skin diseases. Using ResNet-
152 they achieved an average AUC of 0.91 on the Asian
Test Dataset and an AUC of 0.89 on the Edinburgh Dataset.
Rajpurkar et al. [15] used ChestX-ray14 dataset [16] to
detect 14 pneumonia types. They used binary relevance and
DenseNet-121. Although this method reduces the complexity
of the training, it does not directly account for the relation
between classes. This method achieved an average AUC of
0.8411 and an F1-score of 0.435 which is higher than the
radiologists (0.387). In a similar approach, Narin et al. [17]
used a variety of DCNNs to detect Covid-19. Using a small
dataset of 50 images, they were able to achieve an F1-score
of 1 on both the InceptionV3 and ResNet-50 architecture. In
another work with 192 images [18], Chetoui et al. obtained
an AUC of 0.973, a specificity of 0.966 and a sensitivity of
0.951 using ResNet-50.
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A. DCNNs on CheXpert

The dataset used in this work was published and accom-
panied by a deep learning approach to classify the diseases
[10].

This paper also explored 5 methods to deal with the
uncertainty label that can be present in the training subset.
The U-Ignore adjustment consists of ignoring the label that
are marked as Uncertain (-1) while calculating the loss
during the training phase. This method can be viewed as
the safer option since it doesn’t speculate the unknown
labels like the other three methods. The second and third
method is to set the uncertainty labels as either 0 (U-
zero method) or 1 (U-One method). However, as one can
expect, this method could mislabel a large proportion of the
classes which would then misrepresent the results. The fourth
method called U-SelfTrained has a similar concept to a semi-
supervised model using the U-ignore method. This method
consists of first training a model using the U-ignore approach
until convergence. Then the labels that have an uncertainty
are predicted by the model who was previously trained.
Similar to the second and third method, some labels may be
misclassified which would greatly impact the final results.
The fifth method named U-MultiClass consist of dealing
with the uncertainty labels as its own class. This method
completely removes the problem of creating miss-classified
labels while keeping all the images plus 33% more classes.
This addition of classes not only augments the complexity
of the model but also creates a redundancy in labels.

All five methods were trained using a DenseNet-121 [19]
and Adam optimizer [20] on images resized to 320x320
pixels. A variety of other models were also used such as
Alexnet [21] and Resnet-50 [22] nevertheless the DenseNet
performed the best. However, this paper couldn’t come to
a conclusion regarding the best method for handling the
uncertainty labels. Some methods have a significant augmen-
tation for a particular disease while for a different disease the
difference is minimal. This paper achieved a maximum AUC
of 0.858 for Atelectasis (U-one), 0.854 for Cardiomegaly (U-
MultiClass), 0.939 for Consolidation (U-SelfTrained), 0.935
for Edema (U-SelfTrained), 0.936 for Pleural Effusion (U-
MultiClass) which gives an average AUC of 0.9054.

B. Directed Acyclic Graph

Pham et al. [11] proposed a hierarchical like method of
training using what is known as a Directed Acyclic Graph
(DAG). The proposed approach has the current best overall
performance for the CheXpert dataset.

DAG is a method to represent the dependencies between
diseases such as the presence of an enlarged cardiomedi-
astinum in cardiomegalies. This explicit implementation of
dependencies and the effect of it were not taken into account
in previous research. Using a DAG allows the human to
attribute a known correlation between labels which reduces
the amount of information a DCNN must learn. The first
step of this method is to learn the dependencies between the
parent disease and its leaf using a CNN. This is done by
only using positive parents to train a model able to classify

its direct child, meaning a two level child leaf can not be
classified using this method. The second step consists of
freezing all but the last layer of the CNN and then to train
this layer with the full dataset. The prediction of a class is
thus the conditional probability of the label being positive
and the parent of said label to be also positive. A Bayes rule
is then used to find the unconditional probability of a class
by multiplying the conditional probabilities of all parents of
a child.

This method however does not directly remove the un-
certainty class from the images which is still the biggest
challenge of this dataset. To solve this, a method called label
smoothing regularization (LSR) combined with previous
methods proposed in [10]. This method consists of using
either U-Zero or U-One from [10] and replacing the absolute
0 and 1 by a random float close to the value of the respective
method. I.e. when using the U-Zero method then a value
would be closer to 0 rather than 1 (e.g. 0.05) while the U-
Zero would be closer to 1 (e.g. 0.95). This has the purpose of
reducing the impact of the uncertainty label which in turns
reduces the impact of mislabeled data. However this method
does not eliminate the possibility of having mislabeled data,
it only reduces it.

The images of size 224x224 were first normalized us-
ing the mean and standard deviation from the ImageNet
dataset [23]. A variety of models (DenseNet-121,169,201
[19], Inception-ResNet-v2 [24] and Xception [25]) were
then combined to create an ensemble learning model. This
method achieved an AUC of 0.909 for Atelectasis, 0.910
for Cardiomegaly, 0.957 for Consolidation, 0.958 for Edema,
0.964 for Pleural Effusion with a mean AUC of 0.940. These
results show the possibility of using deep learning to detect
and classify a variety of diseases present on CXRs.

III. DATASET

CheXpert dataset [10] was collected by the Stanford Hos-
pital between 2002 and 2017 from a variety of patients lead-
ing to over 200,000 images. With 14 diseases, this dataset
had images which may contain multiple positive labels on
a single image. The labels are as follows: support device
(105,831), lung opacity (92,669) , pleural effusion (75,696),
edema (48,905), atelectasis (29,333), cardiomegaly (23,002),
pneumothorax (17,313), no finding (16,627), consolidation
(12,730), enlarged cardiom. (9,020), fracture (7,270), lung
lesion (6,856), pneumonia (4,576) and pleural other (2,441).
The dataset consisted of 220,000 training images which had
either a frontal or side view of the chest. Some example
images are given in figure 1. A validation set of 200 images
was also included, this set of images only contained positive
and negative labels.

The ground-truth value of the images consists of four
possible labels which are u, 0, 1 or -1. The labeling of the
images were done by an automatic labeler using radiologists
reports. The positive (1) and negative labels (0) means that
a disease was present or not. The u label means that all
mentions of the disease were negative but one mention was
uncertain. The uncertainty label (-1) represents either the
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Fig. 1: Example images from CheXpert dataset, from left to
right, up to down: Atelectasis, consolidation, cardiomegaly,
pleural effusion, edema, and no finding.

uncertainty of a radiologist or the ambiguity in a report.
These two labels represent a challenge since they couldn’t
be attributed to a specific class.

A. Dataset Modification

The images in both training and validation sets were
resized to 512x512 while reducing the grayscale image from
three channels to one channel. The resizing and color space
modification were the only modifications done on this dataset
to not affect the validity of the images.

For the labels we decided to set all u labels as nega-
tive since statistically they have a higher chance of being
negative. For the uncertainty label (-1) we decided to opt
for the safest approach and ignore those images during the
training phase. This allowed us to be more confident with
our results since there was no ambiguity in the used labels.
Since we are using binary relevance, removing the images
with an uncertain label did not greatly impact the size of
the disease specific subset. We used 15,000 images from the
training subset as our validation set.

The previous papers using this dataset only referred to
five diseases (edema, consolidation, cardiomegaly, pleural
effusion and atelectasis) to validate their approach. This was

due to both the important number of these disease images
and the imbalance within the given validation dataset. To
compare with previous research, we decided to also use those
five diseases as an indicator of the overall performance of
our approach.

IV. PROPOSED APPROACH

A. Binary Relevance

Previous research on CheXpert dataset used what is com-
monly known as multi-label classification. This method of
classification is when a singular model is trained to predict
N classes where N is the number of labels. Although this
method has its advantages such as limiting the number of
models to one, this is however also its main disadvantage.
Due to the need of predicting all the classes out of one model,
the complexity increases drastically and the performance
decreases. In this work, we use a binary relevance approach.
Binary relevance can be viewed as having N unique models,
each predicting a distinctive class for N labels. Binary rele-
vance allows us to more efficiently deal with the uncertainty
label by ignoring it. During the training and validation phase
of our models, we ignore the images with an uncertainty label
for its disease specific model. Considering the size of our
dataset, ignoring a portion of the images is not a problem and
assures the certitude of the positive and negative labels used.
We used the Area Under the Curve (AUC) as a performance
metric. This metric is used due to its ability of giving a bigger
importance to a minority class such as our positive labels in
an imbalanced dataset.

B. Models

The following architectures were adapted to our
problem: DenseNet-121,169,201 [19], InceptionResnetV2
[24], InceptionV3 [26], MobileNet, MobileNetV2 [27],
ResNet101, ResNet101V2, ResNet152, ResNet152V2,
ResNet50, ResNet50V2 [22], VGG16, VGG19 [28] and
Xception [25].

These models were both trained with Adam [20] and SGD
optimizers [29]. We tested both training the full architecture
using the available training set and also used transfer learning
with pretrained layers on the ImageNet dataset [21].

V. RESULTS

The Adam optimizer achieved its best results combined
with the pretrained Xception architecture with an average
AUC of 0.9587. The results for the individual disease de-
tection using the Adam optimizer are as follows: an AUC
of 0.9390 for Atelectasis, 0.9667 for Cardiomegaly, 0.9469
for Consolidation, 0.9647 for Edema and 0.9766 for Pleural
Effusion. Unlike Adam optimizer, the SGD optimizer did
not achieve an overall best result with one model (dif-
ferent architectures performed differently on each disease).
The SGD optimizer achieved an AUC of 0.9535 for At-
electasis (ResNet152-pretrained), 0.9721 for Cardiomegaly
(Res152V2-pretrained), 0.9575 for Consolidation (Xception-
pretrained), 0.9729 for Edema (Res50V2-pretrained) and
0.9822 for Pleural Effusion (ResNet152-pretrained). These
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results give an average AUC of 0.9676 compared to 0.9587
from the Adam trained models.

When comparing with state-of-the-art work, we can see
that we obtain a higher AUC for all the five measured
diseases. The previous highest mean AUC achieved was from
[11] with an average AUC of 0.940 while our best average
AUC is 0.9676. This increase of 0.0276 (2.76%) using a
simple architecture shows the improved performance given
by the deep binary relevance approach proposed in this work.

In addition we tested the models on all 14 diseases using
the Xception network with Adam optimizer and achieved
a mean AUC of 0.949. The AUC result for each class
are as follows: support device (0.96855), lung opacity
(0.92172) , pleural effusion (0.9748), edema (0.96436), at-
electasis (0.93883), cardiomegaly (0.96885), pneumothorax
(0.96354), no finding (0.95858), consolidation (0.94346),
enlarged cardiom. (0.92827), fracture (0.9357), lung lesion
(0.93618), pneumonia (0.9406) and pleural other (0.94478).

VI. CONCLUSION

We propose a simple but effective approach for the de-
tection and classification of multiple diseases using CXR
images. Using the CheXpert dataset, we developed a deep
Convolutional Neural Network techniques which could ef-
fectively classify the CXR images. Our approach achieved
higher results on all the five diseases used in past works.
The proposed deep binary relevance approach explains the
achieved performance.

The developed techniques can be used to build a CAD
system to help radiologists and physicians and speed up the
diagnosis. Furthermore, this method could easily be con-
verted for the detection of other pulmonary diseases. Future
work includes developing an ensemble approach with the
developed models, optimizing and creating new algorithms,
testing more datasets, and adapting the approaches to other
imaging modalities and other diseases.
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