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Abstract— Homes equipped with ambient sensors can mea-
sure physiological signals correlated with the resident’s health
without requiring a wearable device. Gait characteristics may
reveal physical imbalances or recognize changes in cognitive
health. In this paper, we use the physical interactions with
floor to both localize the resident and monitor their gait.
Accelerometers are placed at the corners of the room for
sensing. Gradient boosting regression was used to perform
localization with an accuracy of 82%, reasonably accounting
for inhomogeneity in the floor with just 3 sensors. A method
using step time variance is proposed to detect gait imbalances;
results on induced limps are presented.

Keywords: Indoor Localization, Classification, Machine
Learning, Signal processing, Smart Homes, Gait

I. INTRODUCTION

Ambient intelligence is a developing research field that
explores the interaction between sensed environments and
their inhabitants [1]. Smart sensor technologies deployed in
the home environment introduce ambient intelligence applied
to monitoring the resident’s wellbeing. The sensed activities
of daily living performed in home environments can reveal
indicators of a resident’s mental and physical health.

In this paper, we explore a means of monitoring the
resident’s movements and activities. Changes in movement
patterns have been linked to mental health or depression.
Depression is widely prevalent; about 7.6% of the US
population aged 12 years and over has depression in any
2-week period [2]. Amongst those that seek treatment, up to
80% show an improvement in their symptoms [3]. Despite its
success rate, nearly 2 in 3 people suffering from depression
do not actively seek nor receive proper treatment [3]. This
may be due to the negative stigmas around mental health.
For example, depressive symptoms shown by men in their
everyday lives may be misinterpreted as expressions of
masculine ideals [4]. Activity curtailment is a risk factor,
while engagement and a close social network are described
as protective factors from depression [5].

Moving slowly, restlessness, and change in sleeping pat-
terns are symptoms of major depressive disorder [6]. We
hypothesize that monitoring the resident’s movements and
habits can detect possible depressive symptoms. A resident’s
habits can be tracked through their locations in the home
over time. Increase of time spent in bed, or frequent pacing,
can only be monitored in the home.

1The authors are with the Device Realization Laboratory in the Depart-
ment of Mechanical Engineering and the Institute for Medical Engineering
and Science, Massachusetts Institute of Technology, Cambridge, MA 02139,
USA.

Fig. 1: Diagram of the experimental setup room with furni-
ture. Red circles represent the 3 accelerometer sensors. The
subject walked on the blue squares indicating the 6 different
locations within the grid. The floor is hardwood.

Gait and balance symmetry may change over time. Be-
cause a gradual change in gait is difficult to self-detect, a
smart home sensing system could alert the resident of any
problematic changes in gait over time. One application of
gait monitoring is for patients of Parkinson’s disease, who
are susceptible to Parkinson’s gait. Patients have reduced gait
speed, increased axial rigidity, and impaired rhythmicity [7].
The treatments create further challenges because they cause
fluctuations in motor response [7].

We propose that both location and gait properties of the
resident can be monitored through the natural physical inter-
actions between a resident and their floor through footfalls.
This approach is a non-invasive and continuous mode of
monitoring. We capture and analyze data from footfalls with
a minimal number of sensors.

A. Background

Related methods to monitor movement include vision
based approaches such as infrared sensors [8] or depth
cameras [9]. Some view these methods as a breach of
privacy and are ineffective if line of sight is obscured.
One recently developed non-contact solution is RT-Fall,
which uses WiFi signal sensing [10]. Although effective,
the detection deteriorates if the environment changes, such
as if movement of furniture blocks the line-of-sight of the
signal. Several approaches to localization have been made
with accelerometers on the floor. Footsteps on a concrete
floor were localized with 56% success rate when locations
were discretized into 1 m by 1 m grids [11].

Devices such as smart watches and smart phones may
detect the user’s location and their walking [12]. However,
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this relies on the user physically wearing the device, which
may be cumbersome for many, especially in the comfort of
their own homes.

In this paper, we present the results of indoor human
localization and gait analysis from the ambient floor sensor
design shown in Fig. 1, as follows: In Section II, we describe
the design and performances of machine learning algorithms
to localize human footsteps. In Section III, we analyze
different gait imbalances. In Section IV, we discuss our
results and the future work involving smart floor design.

II. INDOOR LOCALIZATION

A. Experimental Setup

Three accelerometers were placed in the corners of a 4 m
by 3.4 m bedroom with furniture as shown in Fig. 1. The
bedroom has hardwood floors and is furnished with a heavy
bed and other furniture as shown. Three high sensitivity low
frequency seismic accelerometers by PCB Piezoelectronics
(model 393A03) were placed in the corners of the room to
detect the vibrations on the floor. The number of sensors
were kept to a minimum to increase the scalability of
this approach while detecting enough signal. The data was
collected through National Instruments (NI) cDAQ-9174 and
NI 9230 data acquisition modules. The sampling frequency
was 12.8 kHz. We used a frequently used walking path
in this room to gather barefoot walking data with footfalls
placed at 6 different 0.5m by 0.5m grid locations. This study
was performed under Committee on the Use of Humans
as Experimental Subjects (COUHES) protocol 2011000269.
This walking path was repeated by the same subject 50 times,
totaling 300 footsteps. This gave 50 discrete datapoints at
each of the 6 grid locations.

B. Feature Extraction

Signal processing was performed on the data to extract
the desired features, which were then used to run the
classification algorithm. To remove noise, we used a finite
impulse reponse (FIR) lowpass filter with cutoff frequency
of 0.3π rad/sample. We took the absolute value of the signal
and used windowing to find the peaks of each footfall impact
and their corresponding impact onset times. Example data
and signal processing results are shown in Fig. 2.

The extracted features are as follows: the peak magnitudes
in Volts of each impact for each of the 3 sensors, the
differences between the two largest magnitudes and the
smallest magnitude between the 3 sensors, and the time
differences in the impact onsets. The time differences were
calculated by subtracting the earliest onset time between the
3 sensors from the onset time of the other two sensors. For
example, if the onset times were 12.05s, 12.08s, and 12.01s
for sensors 1,2, and 3 respectively, the time difference feature
values would be 0.04, 0.07, and 0. Therefore the feature
vector for a single footfall impact has 9 elements.

The data were split between training and testing data
using 10-fold cross validation with stratification to maximize
the size of the dataset while keeping the distribution of
location labels consistent throughout the folds. We used L1

Fig. 2: (a) Example of a raw signal picked up by sensors
from two footfalls. (b) Example of processed signal where x
indicates the impact onset time and the red o indicates peak
magnitude.

normalization on each of the split training data to minimize
sensitivity to outliers. We ran XGBoost [13] with default
values to find the the F scores of features, which indicate
their importance in classifying the locations. Features with F
scores under 90 were omitted. The included features had F
scores above 340. The ineffective features were magnitude
differences at sensor 3, time differences at sensor 1, and
absolute magnitude values at sensor 1 and 2. Sensor 3 was
placed near a heavy piece of furniture, so the accelerometer
vibrations were most likely dampened. Therefore the sensor
3 magnitudes were irrelevant because they were always near
0. Conversely, sensor 1 was in the most open area, so it was
the most sensitive. It frequently felt the vibration first, so
the time differences at sensor 1 is often 0. Lastly, sensor 1
and sensor 2 absolute magnitudes are irrelevant because the
magnitude differences in the other features already record
these values, so they are duplicates.

Once these four features were omitted, we used both
classification and regression to predict the locations. As
a classification problem, we label the test datapoints into
distinct location buckets. We ran random forest classifier
(RF) and k-nearest-neighbors classifier (KNN) [14] using
randomized search with 50 iterations for hyperparameter
optimization. We selected these classifiers because of their
simplicity due to the relatively small number of datapoints.
As a regression problem, we note that the locations are
linearly spaced, as shown by the blue crosses in Fig. 1, and
have correlated signals and features due to their physical
proximity. For example, locations A and B are more likely
to have a related set of features than locations A and F. We
used 1D gradient boosting regression (GBR) due to the small
amount of datapoints and used randomized search with 20
iterations for hyperparameter optimization. A comparison of
the accuracy of the classifiers and regression is shown in
Table I.
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C. Results and Discussion

RF and GBR performed similarly with around 82% ac-
curacy. However, the root mean squared error (RMSE) is
important to consider for our application. Classifying a
location incorrectly but still predicting a close location is
less problematic than predicting a location that is very far
away. We conclude that gradient boosting regression method
performs the best with 82% accuracy and an RMSE of
0.285m.

TABLE I: Location Classification Results

Accuracy RMSE [m]

KNN 76% 0.351
RF 82% 0.439

GBR 82% 0.285

III. GAIT ANALYSIS

Analyzing stride length and step time are important be-
cause both can be indicative of a person’s stability and fall
risk [15]. Building on the localization method shown in Sec.
II, calculating stride length, and it’s change over time, is
straightforward. We count the number of impacts between
the first and last step and calculate the distance between those
locations.

Conversely, step time is more difficult to find. We used
the same experimental room and sensors for this purpose, as
described in this following section.

A. Experimental Setup

We gathered different walking data with varying step times
for gait analysis. The dataset from Section II was performed
with normal walking gait. We repeated walking on the same
path with one foot wearing sneakers and the other barefoot.
The sneaker heel height is 3 cm. The shoe was used to
emulate slight limping due to leg length differences. To
simulate a severe limp, we repeated the experiment but this
time with a boot on one foot and barefoot on the other. The
boot heel height is 6 cm. These limping walking paths were
repeated 20 times each, resulting in 120 datapoints for each
limp. The shoes worn for these experiments are shown in
Fig. 3.

Fig. 3: Different shoes used to mimic severe limp and slight
limp by different leg lengths. Only one shoe was worn; the
other foot was barefoot.

B. Gait Imbalance Detection

The challenge of detecting step time abnormalities lies
in distinguishing between the left and right leg. Assuming
the limp is caused by the same leg each time, the problem
arises when the resident of a home stops and starts walking
frequently. There is no guarantee that the resident will always
start walking with the same foot. Therefore, the floor is
unable to distinguish between the left and right leg. Data
are shown in Fig. 4 to demonstrate this issue. In order to
detect a limp, there needs to be a method to combine the
different walking segments such that the limp is determined
from a larger number of datapoints rather than one episode
of walking. Given that there are furniture in the home, the
resident will rarely walk long enough to determine if there
is a gait imbalance just from one walking episode.

We propose a novel approach to determine step time
imbalances by using the distribution in time between heel
strikes from left-to-right and right-to-left of all combined
impacts. By using the impact onset times as described in
Section II-B, we calculate step times by using the time
difference between the current and previous impact. By
analyzing the distribution of these step times, we determine
any changes in gait over time as well as detecting if a gait
imbalance meets a certain threshold.

Fig. 4: Processed signal from slight limping. The subject
walked 4 steps back and forth. The 4 steps are not enough
to determine if there is a limp. The different episodes of
walking must be combined, but the left and right legs cannot
be labeled.

C. Results and Discussion

The step time distributions of normal walking, slight
limp walking, and severe limp walking is shown in Fig.
5. The mean step time, standard deviation, and bimodality
coefficients for these distributions are summarized in Table
II. Though the distributions follows a unimodal distribution,
the standard deviation increases for the slight limp when
compared to the normal walking distribution. The bimodality
coefficient is also larger in the slight limp step times when
compared to the severe limp step times. This approach
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bypasses the need to label every impact with the correct leg
to analyze the resident’s gait.

Further, the severe limping distribution clearly shows a
bimodal distribution with a large standard deviation and
bimodality coefficient. This demonstrates that one leg had
a significantly larger step time than the other. With this
approach, a threshold using standard deviation and bimodal-
ity coefficient can be set to alert the resident of a newly
developed limp. This threshold can be a function of gradual
change over time.

Fig. 5: Three histograms showing the distribution of normal
walking, slight limp walking, and severe limp walking.
Normal and slight limp both follow unimodal curves, but the
slight limp distribution is wider. Severe limp shows a distinct
bimodal distribution corresponding to the two different legs.

TABLE II: Gait Imbalances Results

Mean [s] Std. [s] Bimod.

Normal 0.65 0.052 0.290
Slight Limp 0.67 0.065 0.407
Severe Limp 0.72 0.40 0.699

IV. CONCLUSIONS AND FUTURE WORK

We have demonstrated in this paper that using 3 sensors
in the corners of the room can locate the resident to 82%
accuracy. We also proposed a novel approach to detect step
time asymmetries of the resident by using the bimodality of
the step time distribution.

The number of sensors were kept to a minimum for better
scalability of this approach. Further analysis of how the
number of sensors affect the signal accuracy could be per-
formed. With the growing aging population, another concern
for residents in a home is emergency health monitoring
such as detecting a fall. The proposed technique could be
extended toward distinguishing between a fall that results
in serious injury, trips that the resident quickly recovers
from, and everyday objects dropped on the floor. With
successful detection, a smart home could automatically call

for an emergency medical response with improved detection
accuracy.
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