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Abstract— Efficient real-time detection of epileptic seizures
remains a challenging task in clinical practice. In this study, we
introduce a new thresholding method to monitor brain activities
via a non-uniform multivariate (NUM) embedding of multi-
channel electroencephalogram (EEG) signals. Specifically, we
present a NUM embedding optimization problem to identify the
best embedding parameters. We originate one feature, named
non-uniform multivariate multiscale entropy (NUMME), which
is extracted from the NUM embedded EEG data. Finally, the
extracted feature, compared to an individualized threshold, is
used for monitoring and detecting seizure onsets. Experimental
results on the real CHB-MIT Scalp EEG database show
that our approach achieves a comparable performance to the
state-of-art methods. Moreover, it is important to note that
we accomplish this without using any sophisticated machine
learning algorithms.

Clinical relevance— This decision support tool provides a
patient-specific measurement of brain complexity for real-time
seizure detection at 96% sensitivity rate.

I. INTRODUCTION

Epilepsy is one of most common neurological disorders,
which is characterized by recurrent seizures [1]. According
to the recent statistics of World Health Organization (WHO),
more than 50 million people across different ages suffer from
epilepsy in the world [2]. Failure to detect the seizure onsets
in time may lead to serious accidents and even threatening
the lives of patients. However, up to date, prompt detection of
epileptic seizures still remains a challenging task. Scalp elec-
troencephalography (EEG) is a non-invasive technique for
real-time recording of neuronal electrical activities. Multi-
channel EEG signals in the form of multivariate time series
are capable of representing underlying dynamics of the brain
system, and thus are widely used for seizure detection.
Due to the non-linearity and non-stationarity nature of EEG
time series, traditional signal processing techniques such as
Fourier transform and wavelet transform are not applicable.
Therefore, a variety of nonlinear time series analysis have
been implemented to characterize the epileptic patterns of
EEG signals [3]–[5].

The state space reconstruction of complex systems by
using observed time series is the foundation of nonlinear
time series analysis. In past decades, several methods have
been proposed to address the reconstruction problem, and
time-delay embedding is the most popular approach due to its
simplicity and efficiency. The majority of existing embedding
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schemes are based on uniform univariate (UU) embedding
on univariate time series [6]. Nonetheless, there are several
limitations regarding the UU embedding. Especially, when it
comes to embedded systems inheriting multiple time scales
structure, multivariate time series and noise contaminated
input data. It is noteworthy that using non-uniform time
delays could ensure a successful embedding of systems
exhibiting a heterogeneous temporal scales behaviour. In
the past decades, some methods including non-uniform time
delays with extension to multivariate time series have been
introduced [7], [8]. However, we found that their applications
are rather limited and not popular compared to the UU em-
bedding. This could be due to the sophistication nature which
makes it hard to be implemented and high computational
cost for high-dimensional complex times series data. To this
end, we introduce a new effective non-uniform multivariate
(NUM) embedding algorithm in this work.

To monitor and detect seizure onsets, various informa-
tive feature extraction methods have been developed for
characterizing epileptic patterns from embedded EEG sig-
nals, including recurrence quantification analysis (RQA) and
algebraic connectivity analysis [4]. Inspired by multiscale
entropy (MSE) analysis [9], [10], we will introduce a new
feature extraction technique named non-uniform multivariate
multiscale entropy (NUMME) and demonstrate its superior-
ity over existing methods.

Furthermore, in practice, the above mentioned feature
extraction methods are usually integrated within a state-of-
the-art machine learning framework (e.g., neural networks,
support vector machine, logistic regression) [3], [11]–[15].
These elaborate frameworks have been proven to signifi-
cantly improve the seizure detection accuracy, but the great-
est shortcoming is that they are not applicable for real-time
seizure detection due to high computational cost.

In this study, we propose a novel computationally efficient
framework suitable for real-time seizure detection, which can
be applied in automated seizure control system for clinical
treatments. We present the empirical results based on the
benchmark CHB-MIT Scalp EEG database [16], comparing
to the state-of-the-art methods.

II. RELATED WORK

For the state space reconstruction, an embedding vector
should satisfy two properties: (1) Relevance: it is able
to predict the dynamics of the system, in other words,
it is relevant to the future states of the system and (2)
Nonredundancy: its components are as independent as
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possible to each other. In previous work, several NUM em-
bedding algorithms were developed [7], [8] to optimize the
embedding with a trade-off between Nonredundancy and
Relevance. However, there are two major limitations in their
work. Firstly, they put the same weights on Nonredundancy
and Relevance, whereas in practice we are more interested
in whether the reconstructed vector can well explain the
underlying dynamics. Hence, we will assign more weights
to Relevance in our model. Secondly, for the Relevance
objective, they only consider the performance of predicting
future state in one step forward, which is not enough to
disclose the relevance property. Instead, we will extend the
prediction horizon to several time steps ahead.

Quantifying the complexity of signals (e.g., EEG) is a
prerequisite for understanding the mechanisms of signal
generating systems (e.g., human brain). In the literature,
several methods have been developed to measure the com-
plexity of physical and biological time series [9], [10]. The
multiscale entropy (MSE) analysis is a univariate technique
and only capable of measuring the complexity of single
time series [9]. The recently proposed multivariate multiscale
entropy (MMSE) method generalized the MSE scheme for
multivariate time series [10]. However, both of MSE and
MMSE are based on the uniform embedding, and obviously,
there are limitations on such embedding like mentioned
before. To bridge the gap, we herein introduce the NUMME
criterion based on our proposed NUM embedding.

III. METHODOLOGY

In this section, we present a framework for real-time
seizure detection. First of all, we introduce an automated
NUM embedding method based on a combinatorial optimiza-
tion problem. Secondly, we propose a feature, i.e., NUMME,
for seizure detection by adapting the concept from MSE
analysis [9], [10]. The NUMME feature is extracted from
the NUM embedded EEG data. Finally, we show a simple
thresholding approach applied on the extracted NUMME
feature for monitoring seizure onsets.

A. Non-Uniform Multivariate (NUM) Embedding

Given a multivariate time series {xn,t}, where channel
n = 1 . . . N and time point t = 1 . . . T , the NUM embedding
vector at time t is written as

xt =
(
x1,t+τ11 , . . . , x1,t+τ1m1

, . . . , xN,t+τNmN

)
, (1)

where τij is the j-th lag (time delay) for the channel i which
is selected by solving an optimization problem shown later.

In our NUM embedding algorithm, we choose to
use mutual information to evaluate Nonredundancy and
Relevance. The mutual information is a fundamental notion
in information theory. It measures the mutual dependence
between two random variables or time series.

With the maximum embedding lags Ln for each time
series n = 1, . . . , N , we have a set of

∑N
n=1 Ln candidate

lags. In our experiment, we chose Ln = 2. The main goal is
to find an optimal combination of these candidates to build
the embedding vector. This is a combinatorial optimization

problem, and it is computationally intractable to investigate
all the possible combinations. Thus, we propose an iterative
scheme shown below to handle it. We choose one candidate
lag in each iteration and progressively expand the embedding
vector until meeting a stopping criterion.

Start with an initial empty embedding vector e0. At
iteration i, note that we already have a reconstructed
vector ei−1 = (x∗1, x

∗
2, . . . , x

∗
i−1) of dimension i − 1, and

meanwhile the feasible set of candidate lags shrinks to Si =
{x1,t, . . . , x1,t+L1

, x2,t, . . . , xN,t+LN
} \

{
x∗1, . . . , x

∗
i−1
}

.
Then, we choose an optimal lag x∗i to add into the embedding
vector by solving the following optimization problem (2).

max
x∗
i∈Si

λ

{
1

N

N∑
n=1

(
1

Pn

Pn∑
p=1

I (xn,t+Ln+p; x
∗
i )

)}
(2)

+ (1− λ)

−
i−1∑
j=1

I
(
x∗j ; x

∗
i

) ,

where I(·; ·) represents mutual information, N is the number
of channels, Pn indicates the maximum prediction horizon
for the n-th channel, and λ is the trade-off parameter. We
chose Pn = 2 and λ = 0.9 in our experiment.

The first term weighted by λ in model (2) represents the
Relevance objective, while the second term in model (2)
resembles the Nonredundancy objective. We observe that
the first term in (2) is large as the future states xn,t+Ln+p

are dependent on the new added lag x∗i , while the second
term in (2) is large when the candidate x∗i is independent
to the already selected components x∗j in the embedding
vector ei−1. Therefore, our model (2) can generate an
optimal embedding vector that maximizes the satisfaction
of two favorable properties for phase space reconstruction.
Actually, it gives the best trade-off between Relevance and
Nonredundancy.

To terminate the above iterative algorithm, we choose the
false nearest neighbor (FNN) method [6] as the stopping
criterion. The progressive building of embedding vector ends
when the percentage of false nearest neighbors going from
ei−1 to ei at iteration i is smaller than a properly chosen
threshold (e.g., 0.01 in the experiment). The final embedding
vector is then ei−1.

B. Non-Uniform Multivariate Multiscale Entropy (NUMME)

Given a N -variate time series {xn,t}, where n = 1, . . . , N
represents the channel index and t = 1 . . . T indicates
the time point, we can evaluate its NUMME measure of
complexity in the following three steps.

1) Set the time scale range. For each scale factor s
in the range, we construct a non-overlapping coarse-
grained time series ysn,i =

1
s

∑is
t=(i−1)s+1 xn,t, where

i = 1, . . . , bTs c and n = 1, . . . , N .
2) Compute non-uniform multivariate sample entropy

(NUMSampEn) for each coarse-grained multivariate
time series {ysn,i}.

3) Perform cumulative summation of NUMSampEn over
the temporal scale range to obtain the NUMME mea-
sure for each scale factor s.
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Algorithm 1 Non-Uniform Multivariate Sample Entropy
1: Set the threshold r = 1 as the standard deviation of the

standardized data.
2: Construct (T − L) NUM embedding vectors xM (i) ∈

RM , where i = 1 . . . T − L and L = max(τ ) + 1.
3: for i = 1 . . . T − L do
4: BMi (r)← 1

T−L−1
∑T−L
j=1,j 6=i 1 (d (xM (i),xM (j)) ≤ r)

5: end for
6: BM (r)← 1

T−L
∑T−L
i=1 BMi (r)

7: Construct a total of p(T −L) vectors xnM+1(i) ∈ RM+1

by separately increasing the embedding dimension of
xM (i) from mn to mn+1 (i.e., add a new lag τn,mn+1)
for each channel n ∈ S = {n|1 ≤ n ≤ N,mn > 0},
where p =

∑N
n=1 1 (mn > 0).

8: for n ∈ S do
9: for i = 1 . . . T − L do

10: BM+1
i (r)← 1

T−L−1
∑T−L
j=1,j 6=i 1

(
d
(
xnM+1(i),x

n
M+1(j)

)
≤ r
)

11: end for
12: AMn (r)← 1

T−L
∑T−L
i=1 BM+1

i (r)
13: end for
14: AM (r)← 1

p

∑
n∈S A

M
n (r)

15: NUMSampEn (m, τ , r, T )← − log AM (r)
BM (r)

To obtain NUMSampEn in Step 2), recall from the
NUM embedding vector (1), let us define m =
(m1,m2, . . . ,mN ) ∈ RN as the embedding dimension
vector and M =

∑N
n=1mn as the dimensionality of

the NUM embedding vector. Also, we denote τ =
(τ1,1, . . . , τ1,m1 , τ2,1, . . . , τN,mN

) ∈ RM as the embedding
lag vector. Henceforth, we rewrite xt in (1) as xM (t) ∈ RM .
Then the method for calculating NUMSampEn of a N -
variate time series {xn,t}Tt=1, n = 1, . . . , N is presented
in Algorithm 1, which represents a natural extension of uni-
form univariate sample entropy (SampEn) [17] and uniform
multivariate sample entropy (MSampEn) [10]. Note that we
use 1(·) as the indicator function (returns 1 if condition
true, otherwise 0), and d(·) as the maximum norm distance
function.

C. Control-Chart-based Thresholding for Seizure Detection

The feature values extracted from each time window of
multivariate EEG signals are concatenated in time order to
form a new univariate time series of feature. Sharp fluctua-
tions are expected in the feature time series, as we use a short
time window of one second. Hence, we implement a three-
point moving average on it for smoothing purpose. Then,
both upper threshold (UT = µ̂ + 2σ̂) and lower threshold
(LT = µ̂−2σ̂) are applied on the smoothed univariate feature
time series for detecting abnormal events of seizure onset,
where µ̂ and σ̂ are mean and standard deviation estimates,
respectively, of 180 time windows (i.e., 3 minutes) located at
the beginning of the corresponding feature time series. The
seizure onset alarm is triggered when 2 of 3 points rise above
UT or fall below LT on the same side.

IV. EXPERIMENTAL RESULTS

We test the proposed seizure detection framework on
the benchmark CHB-MIT Scalp EEG Database [16]. This
public database consists of multi-channel EEG recordings
of 23 epileptic patients from Children’s Hospital Boston.

Each subject’s EEG signals were recorded continuously and
divided into several sessions with length of one hour. The
sampling rate of 256 Hz and around 23 electrodes, which
constitute the EEG channels, were used for the recording.
In EEG recordings of all 129 sessions of 23 subjects, there
were 182 epileptic seizures marked by clinician experts.

The whole procedure of our framework is depicted as
follows. Firstly, we preprocess the multivariate EEG data
by a band-pass filter of 1 − 50 Hz to reject artifacts, and
then standardize each channel to mean of 0 and standard
deviation of 1. Secondly, we perform the NUM embedding
on the multivariate EEG data for each subject. Next, we slice
the NUM embedded EEG time series into non-overlapping
time windows of one second length, namely 256 time points
due to the 256 Hz sampling rate. Then, we extract features
(e.g., NUMME) from each time window and concatenate
in time order to build a new univariate time series of
feature. Finally, we apply the constant thresholding method
on the obtained feature time series for real-time detection of
epileptic seizures.

To evaluate the performance of our method, we use three
common metrics for seizure detection tasks defined below.

1) Sensitivity: Ratio of truly detected seizure states to total
seizure states.

2) False Alarm Rate (FAR): Ratio of falsely detected
seizure states to total normal states.

3) Latency: Time lag in seconds between the start of
seizure onset and the earliest detection.

We compare our proposed NUMME feature to a selection
of RQA features (e.g., LMAX, TND, LAM, TT) and alge-
braic connectivity feature (λ2) [4] which are widely used
for seizure detection in the literature. In addition, we also
compare the effect of our introduced NUM embedding to
well-established uniform multivariate (UM) embedding on
the seizure detection performance. Furthermore, we make the
comparison between our seizure detection framework with
the state-of-art approaches which usually include sophisti-
cated machine learning techniques and numerous complex
features [3], [5], [11]–[15], [18].

The overall comparison results with respect to the per-
formance metrics averaged over all subjects are summarized
in Table I. The monitor chart of selected feature signals for
real-time seizure detection is displayed in Figure 1.

V. DISCUSSIONS

In Table I, we find the NUMME feature consistently
outperforms other features by yielding the highest Sensitivity,
the lowest False Alarm Rate and the shortest Latency, under
both NUM embedding and UM embedding scenarios. We
also notice that, comparing to the UM embedding, although
the NUM embedding significantly reduces the embedding
dimension, it increases Sensitivity by 1% and lowers Latency
by around 1 second of the NUMME feature. Moreover,
the proposed information theoretic approach can parallel the
state-of-art methods in the literature. It is important to note
that our framework can achieve the comparable performance
without using any elaborate machine learning algorithms and
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TABLE I
PERFORMANCE SUMMARY

Feature Sensitivity FAR Latency
NUM embedding (dim = 13)

LMAX 85% 22% 11.03
TND 88% 20% 11.86
LAM 85% 22% 13.10

TT 88% 21% 16.95
λ2 87% 16% 9.91

NUMME 96% 15% 6.68
UM embedding (dim = 23)

LMAX 85% 23% 10.78
TND 89% 20% 10.48
LAM 85% 22% 11.14

TT 87% 22% 11.98
λ2 86% 16% 10.61

NUMME 95% 14% 7.24
Other Studies

Shoeb et al. [11] 96% 5/hr 4.60
Ahammad et al. [12] 98% 14% 1.76
Thodoroff et al. [13] 85% 0.8/hr n/a

Zabihi et al. [3] 88% 7% n/a
Samiee et al. [14] 70% 0.4/hr n/a

Bhattacharyya et al. [15] 97% 1% n/a
Khanmohammadi et al. [18] 96% 0.1% 4.21

Bomela et al. [5] 79% 0.02/hr 4.44

Fig. 1. The real-time monitor chart for Session 13 of Subject 5. The
highlighted segments (in red shadows) mark the seizure onset periods. The
horizontal red lines represent constant upper and lower thresholds.

without additional complicated features. According to Figure
1, the NUMME feature is more sensitive than RQA and λ2
features for detecting seizure onsets. Figure 1 also implies
that the NUMME measure yields more stable monitor than
the rest for seizure detection. On the contrary, RQA measures
exhibit relatively high variation. Furthermore, potential pre-
ictal events are observed in some cases. In summary, our
findings support the claim that our proposed framework is
promising for real-time seizure detection in clinical practice.

VI. CONCLUSIONS

In this study, we presented a novel information theoretic
framework for real-time epileptic seizure detection. Firstly,
an effective NUM embedding algorithm was proposed for
reconstructing state space of the complex dynamic brain
system. Then, we originated the NUMME to quantify struc-
tural complexity of a multivariate time series (e.g., EEG sig-
nals). We found the complexity measure (i.e., NUMME) of
embedded EEG data can successfully characterize epileptic
patterns. Hence, this work connects the complexity property

of brain system with the epileptic seizures, which in turn
inspires future research on relationship between brain system
complexity and neurological disorders (e.g., epilepsy).

Our framework achieves a high sensitivity of 96% on the
benchmark CHB-MIT Scalp EEG Database [16], which par-
allels the state-of-art approaches in the literature. While, we
have to emphasize that our framework achieves comparable
performance without using any sophisticated machine learn-
ing algorithms and without additional complicated features.
Furthermore, interpretability and low computational cost are
two significant advantages of our framework which makes it
suitable for real-time applications.
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