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Abstract—1In this work, we propose to use a deep learn-
ing framework for decoding the electroencephalogram (EEG)
signals of human brain activities. More specifically, we learn
an end-to-end model that recognizes natural images or motor
imagery by the EEG data that is collected from the corre-
sponding human neural activities. In order to capture the
temporal information encoded in the long EEG sequences, we
first employ an enhanced version of Transformer, i.e., gated
Transformer, on EEG signals to learn the feature representa-
tion along a sequence of embeddings. Then a fully-connected
Softmax layer is used to predict the classification results of the
decoded representations. To demonstrate the effectiveness of
the gated Transformer approach, we conduct experiments on
the image classification task for a human brain-visual dataset
and the classification task for a motor imagery dataset. The
experimental results show that our method achieves new state-
of-the-art performance compared to multiple existing methods
that are widely used for EEG classification.

I. INTRODUCTION

Recently, the research on brain-computer interfaces (BCIs)
has been an area of high public awareness. The main goal of
BClI is to restore or provide assistance on some useful func-
tions for the disabled or injured people, such as the spelling
system or the control of cursors, wheelchairs and other
devices. The electroencephalogram (EEG) machine is widely
used in building BCIs. It records brain signals that encode
neural intention with high temporal resolution. However, the
EEG machine alone is not a BCI. The signal processing
techniques are required for EEG-based BClIs, which focus
on the feature extraction, selection and classification. The
recent emerging development of machine learning (ML), or
deep learning, has suggested us that using ML techniques
to decode human EEG signals is a good option [15]. In
particular, with the development of the computing capability,
we are able to learn a high-performing ML system from large
datasets for building the BCIL.

Many traditional ML approaches have been applied in
EEG classification tasks, which include k-nearest neighbors
[19], logistic regression [27], linear discriminant analysis
(LDA) [25], support-vector machines (SVMs) [9], and the
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discrete wavelet transform [20]. More recently, the availabil-
ity of large EEG datasets and advances in ML have both
led to the deployment of deep learning architectures, which
enable large-scale ML systems to achieve higher accuracy
in EEG classification tasks. The deep learning approaches
in literature vary from the auto-encoder [16], convolutional
neural network (CNN) [26], recurrent neural network (RNN)
[11], long short-term memory (LSTM) [2], to more advanced
architectures, such as SyncNet [17], EEGNet [14], EEG-
ChannelNet [21], and graph convolutional network (GCN)
[18]. However, there are still a couple of limitations in the
aforementioned methods that prevent us from building high-
performing BClISs. First, due to high temporal resolution, EEG
signals are usually extremely long sequences. The sequence
models, e.g., RNNs and LSTMs, process the EEG signals
sequentially, namely, they train the data at each time step one
by one, which largely increases the training time for conver-
gence. In addition, although some deep learning frameworks
can capture temporal dependencies, such as RNN-based
models for long-term dependencies and CNN-based models
for neighboring interactions, they can only achieve limited
performance when the sequences are extremely long (see,
e.g., [35]).

In this work, we propose to use the Transformer-like
architecture for EEG classification. Transformer models are
attention-based models, which process the entire signal as
a whole. Theoretically, the attention mechanism naturally
enables the model to capture long term dependencies with
no limitation of the sequence length. In the experiments,
we investigate two variants of vanilla Transformer, i.e., Pre-
LN Transformer and Post-LN Transformer that differ in
the placement of layer normalization [3]. Different from
the vanilla Transformer architectures, we employ the gating
mechanism [22] instead of the residual connection [28].
We show empirically that the gating mechanism can further
improve the model performance. We assess the gated Trans-
former method by conducting classification experiments on
two datasets, i.e., the brain-visual dataset and the motor
imagery dataset. We also compare its performance against
multiple cutting-edge models in EEG data processing. The
results demonstrate that in the brain-visual EEG data clas-
sification, the gated Transformer achieves an accuracy of
61.11%, which greatly outperforms current state-of-the-art
accuracy (52.20%), and in the motor imagery EEG data clas-
sification, the performance of gated Transformer (55.40%)
is comparable to the best accuracy among baseline models
(55.46%), but is significantly better than the performance of
most of the state-of-the-art models.
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Fig. 1: The graphical illustration of the gated Transformer
architecture.

The remaining of the paper is organized as follows. In
the next section, we introduce two forms of the vanilla
Transformer as well as the architecture of the Gated Trans-
former. Then in Section III we present the experimental
results as well as some discussion on them. Lastly, Section IV
concludes this paper with some concluding remarks and
future directions.

II. GATED TRANSFORMER FOR CLASSIFICATION

In this section, we introduce the gated Transformer ar-
chitecture in detail. The model is adapted from [22], where
a gating mechanism is used to stabilize the Transformers
for reinforcement learning. In this paper, we aim to show
that the gated Transformer model is also helpful in the EEG
classification tasks. Fig. 1 shows the details of the overall
architecture for classification.

The input raw EEG data first goes through an input
embedding. Because the Transformer model processes the
sequential data as a whole, to give the model a sense of
the order of the value at each time step, it adds positional
encoding vectors upon the input embedding. The values of
encoding vectors usually follow a specific pattern. Here we
use sine and cosine functions following [28].

126

o,

Layer-Norm

l

(a) Post-LN Transformer

Multi-Head Layer-Norm
Attention \L
) Multi-Head
—>@ Attention
|
Layer-Norm —>$
Feed Forward Layer-Norm
%9 y
= Feed Forward
J
—®

l

(b) Pre-LN Transformer

Fig. 2: The encoder architectures of two variants of vanilla
Transformers.

Then the model tries to encode the input vectors by a set
of encoder blocks (in Fig. 1 we set the number to be N).
The encoder block consists of two major sub-layers, namely,
multi-head attention layer and feed forward layer. The EEG
data at each time step first passes through a self-attention
process. By self-attention, the model can encode any non-
local correlation of EEG data along a long sequence. In the
implementation, we usually use multi-head attention layer for
improving the performance of self-attention layers. Then, the
feature vectors pass through a feed-forward neural network
for further embedding.

The originally designed Post-LN Transformer from [28]
(see Fig. 2(a)) places the layer normalization [3] between
the residual blocks, which has been shown that the ex-
pected gradients of the parameters near the output layer
are large [30]. Therefore, a learning rate warm-up stage
is required for avoiding the problem. On the other hand,
some works [4], [5], [29] put the layer normalization inside
the residual blocks (recently proposed as Pre-LN Trans-
former, see Fig. 2(b)). Then the gradients are well-behaved
at initialization. We adopt the Pre-LN architecture for the
gated Transformer in this paper. Hence, before each sub-
layer (self-attention or feed-forward), the input is normalized
by the Layer-Norm operation, which can be viewed as a
regularization approach.

The main difference between the gated Transformer and
Pre-LN Transformer is that the vectors pass through a gating
layer after each sub-layer. [22] has listed several variants of
gating layers. We investigate all of them in the experiments.
For simplicity, in this section, we only provide the formula-
tion of the best gating layer, which is extended from the gated
recurrent unit (GRU) approach [7], and can be empirically
shown to be more stabilized than the residual connection
in the vanilla Transformer. Assume the vectors x and y are
given as indicated in Fig. 1. The superscript [ is used to
represent the [-th gating layer in the model. Then the gating
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Here, o(-) and tanh(-) represent the sigmoid and tanh func-
tions, respectively. W’s and U’s are the parameter matrices,
and b,’s are the bias terms to be learned. The © denotes
Hadamard product (element-wise product).

Finally, in order to output the probabilities for each class,
the output of encoder is fed into a linear layer with a Softmax
function. The output vector has a dimension equal to the
number of classes and sums up to 1, which represents the
probability of predicting the EEG signal as each class.

ITII. EXPERIMENTS

In order to assess the gated Transformer and compare
with other state-of-the-art methods, we conduct experiments
on two classification tasks, i.e., the brain-visual dataset [21]
and the motor imagery dataset [10]. We first introduce the
detail and pre-processing of the datasets, the models we
use for comparison in the experiments, and then present the
extensive results for the EEG data classification.

A. Datasets

a) Brain-visual dataset: We use the same dataset that
was introduced in [21], which consists of 40 classes and
was collected from 6 subjects (1 female and 5 males). Each
class has 50 different images, which were taken from the
ImageNet dataset [8]. During the experiment, 2,000 images
were shown in bursts for 0.5 second each. The bursts for each
class last for 25 seconds, followed by a 10-second pause
where a black image was shown. The EEG signals were
recorded using a 128-channel cap with active, low-impedance
electrodes (actiCAP 128Ch). Sampling frequency and data
resolution were set, respectively, to 1000 Hz and 16 bits.
After some data cleaning, the brain-visual dataset contains
11,964 EEG segments in total, each segment has a length of
around 500 time steps. In experiments, the first 20 samples
(20 ms) were discarded, and each segment was cut to 440
samples (20 ms to 460 ms). We also report the performance
of different EEG time intervals in the experiments.

For data pre-processing, a second-order band-pass But-
terworth filter was first set up. In the experimental results
presented later, we investigated several low and high cut-
off frequencies for the filtering. The filtered signal is then
normalized to zero mean and unitary standard deviation. In
addition, a notch filter was also used around the power line
frequency at 50 Hz. In order to replicate and compare the
performance in literature, we follow [21] and use the same
training, validation and test splits of the brain-visual dataset,
which consists of 1600 (80%), 200 (10%), 200 (10%) images
with associated EEG signals, respectively.
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b) Motor imagery dataset: We then use the PhysioNet
dataset [10] of the subject-wise scenario to evaluate the
performance of models. The dataset has been widely used
in recent works [31], [33], [34], [35], which was collected
using BCI2000 instrumentation with 64 electrode channels
and 160 Hz sampling rate. It consists of EEG recordings
of movement intention with 109 subjects, each performed
experimental runs for baselines (open/closed eyes), motor
execution (open and close left/right fist, and open and close
either both fists or both feet) and motor imagination (the
same as motor execution, but pure imagination).

Following [35], we pre-processed the dataset by a band-
pass filter with [0.5-55] Hz cut-off, and only considered the
closed-eye baseline and the four motor imaginations. In order
to balance the data for the five classes, for the closed-eye
baseline, we randomly picked number of chunks from each
experimental run which has the same number of trials as
in other classes. As a result, we ended with 11,354 data
points of size 64 (channels) by 656 (time steps). Different
from [35] and the brain-visual experiments, we considered
subject-independent experiments, where we split the data by
subjects to train:validation:test=4:1:1.

B. Models for Comparison

In this paper, we implement and compare the performance
of the gated Transformer with multiple cutting-edge models
for EEG classification. All models are implemented with ei-
ther TensorFlow [1] (Bi-LSTM, CRAM, and Mesh-Cascade)
or PyTorch [23] (SyncNet, EEGNet, EEG-ChannelNet, and
Transformers) framework, and trained from scratch in a fully-
supervised manner. The Adam optimization approach [12]
is used to minimize the cross-entropy loss function, with
tuned learning rates for each model. In addition, the details
of comparison models are given as follows.

a) Bidirectional LSTM (Bi-LSTM): RNNs are widely
used for processing sequential data, where all inputs and
outputs are not explicitly dependent. However, in order to
predict the next value of the sequence, RNN learns a repre-
sentation of the current and historical data. Long Short-Term
Memory (LSTM) networks are a variant of RNN, which is
designed for learning long-term dependencies by introducing
several gating units. The bi-directional LSTM (Bi-LSTM)
model allows us to learn the temporal representation of EEG
data from two directions, namely, a forward path from past
to future and a backward path from future to past. In the
experiments, we also add an attention layer for Bi-LSTM to
better select the useful time steps.

b) SyncNet [17]: Unlike Bi-LSTM, SyncNet is built
upon Convolutional Neural Networks (CNNs), which learn
the interaction among EEG data from different time steps
by convolution operations. SyncNet performs structured (pa-
rameterized) 1D convolution for jointly modeling the power,
frequency and phase relationships among EEG channels. In
addition, we also evaluate the baseline CNN model in the
motor imagery task for the completeness.

c) EEGNet [14]: EEGNet is a fully convolutional net-
work, which performs a couple of 2D convolution layers



along different dimension of the EEG data. It starts with
a temporal convolution to learn frequency filters, then uses
a depthwise convolution to learn frequency-specific spatial
filters. Then through another combination of depthwise con-
volutions, EEGNet learns a temporal summary for each
feature map individually and mixes them for the prediction.

d) EEG-ChannelNet [21]: EEG-ChannelNet is another
CNN-based model developed most recently. The EEG signal
is first processed by a set of concatenated 1D convolutions
along temporal direction (temporal block), followed by a
set of concatenated 1D convolutions across channels (spatial
block). Then the resulting features are processed by residual
layers, which leads to the representation for classification.

e) Convolutional Recurrent Attention Model (CRAM)
[32]: CRAM combines the use of convolutional network and
recurrent network in one model. It first splits the EEG signal
into temporal slices and leverages a CNN to encode each
temporal slice for extracting its spatio-temporal features.
Then an attention-based recurrent network is further used
to explore the temporal dynamics among different slices. In
addition, the attention mechanism concentrates the temporal
dynamics on the most relative slices to the classification.

f) Mesh-Cascade [35]: Similar to CRAM, Mesh-
Cascade consists of spatial feature extraction by a set of
CNNs and temporal feature extraction by stacked LSTM
layers. However, Mesh-cascade conducts a special processing
for the inputs, where it maps 1D input vectors along channels
to 2D matrices (meshes). The 2D meshes contain information
of the electrodes placement, hence the convolution operations
later can better capture the local spatial interactions. Due to
lack of the 2D mapping with the 128-channel dataset, we
only evaluate Mesh-Cascade in the motor imagery task.

g) Vanilla and Gated Transformers: In experiments, we
train the classification tasks on both vanilla Transformers and
gated Transformers. For vanilla Transformers, we assess both
Pre-LN and Post-LN Transformers. For gated Transformers,
in addition to the GRU gates mentioned in last section,
we also test a few of other gating mechanisms, including
InputGate, OutputGate, HighwayGate and SigTanhGate. The
details of each gate formulation can be found in [22].

C. Experimental Results

a) Brain-visual dataset: In the brain-visual data clas-
sification task, we first assess all state-of-the-art models
using whole dataset and complete EEG time course, i.e.,
20-460 ms. Moreover, we process the data using a band-
pass filter with different cut-off frequencies, and test the
classification performance on these frequency ranges. Similar
to [21], the bands we have used include high gamma ([55-
95] Hz), beta to mid gamma ([14-70] Hz), and all frequency
([5-95] Hz). The results are presented in Table I. We can
first observe that the best accuracy or each frequency band
is always achieved by the gated Transformer, two from
GRUGate and the other from SigTanhGate. In particular, for
the high gamma band, GRUGate Transformer outperforms
non-Transformer models by at least ~9% regarding the
classification accuracy. In average, the performance of gated
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TABLE I: EEG classification performance of state-of-the-
art models using band-pass filters with different cut-off
frequencies. The results are averaged across three runs. We
use the whole EEG time course (20-460 ms) and data from
all subjects for this experiment.

] High gamma  Beta - gamma All freq.
Models (55-951 Hz)  ([14-701 Hz)  ([5-95] Hz)
Bi-LSTM 52.20% 45.30% 44.50%
SyncNet 30.39% 24.18% 26.64%
EEGNet 45.36% 34.51% 32.35%
EEG-ChannelNet 50.95% 40.64% 35.90%
CRAM 43.10% 35.60% 37.50%
Post-LN 58.07% 42.77% 37.11%
Transformer

Pre-LN 57.90% 39.80% 34.60%
Transformer

InputGate 58.99% 47.36% 48.32%
Transformer
OutputGate 58.429% 47.28% 46.29%
Transformer
HighwayGate 56.35% 46.58% 47.25%
Transformer
SigTanhGate 59.34% 45.13% 49.13%
Transformer

GRUGate 61.11% 47.53% 46.42%
Transformer

TABLE 1II: EEG classification performance of GRUGate
Transformer using different EEG time intervals with data
filtered in the [55-95] Hz band. The results are averaged
across three runs.

EEG time interval (ms)  Classification accuracy

20-240 52.22%
20-350 56.84%
20-460 61.11%
130-350 54.37%
130-460 56.06%
240-460 53.44%

Transformers are noticeably higher than that of other state-
of-the-art models. By comparing to the vanilla Transformers,
we can also get that introducing the gating mechanisms
increases the Transformer performance by a few percent,
which is most obvious when running experiments on all-
frequency band data. Additionally, the comparison among
filtering frequency bands indicate that better performance is
always achieved on high gamma band for each model, which
is consistent with the literature on cognitive neuroscience
(e.g., [6]) and the conclusion in [22].

We then evaluate the performance of GRUGate Trans-
former on the data that consists of temporal EEG sub-
sequences, namely, we use the EEG signals in different time
intervals as inputs. Table II shows that the best performance



TABLE III: EEG classification performance of state-of-the-art models using the data from each individual subject. The
results are averaged across three runs. We use the entire EEG time course (20-460 ms) and high gamma band-pass filter
([55-95] Hz). For gated Transformers, we only evaluate GRUGate Transformer as a representative.

Models Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5 Subj. 6 Average (+std)
Bi-LSTM 3020%  52.20%  57.60%  72.90%  53.80%  49.40% = 52.68% (+12.59%)
SyncNet 40.21%  5250%  46.25%  63.44%  45.11%  40.83% 48.06% (£7.98%)
EEGNet 19.58%  49.17%  48.85%  62.61%  39.06%  46.56%  44.31% (+13.06%)
EEG-ChannelNet  10.00%  59.90%  48.44%  62.50%  45.63%  44.69%  45.19% (+17.15%)
CRAM 31.40%  50.90%  57.70%  66.00%  45.10%  38.00%  48.18% (+11.62%)
Post-LN
40.31%  68.02%  60.42%  72.18%  51.56%  64.06%  59.43% (£10.69%)
Transformer
Pre-LN
42.60%  64.69%  60.00%  6833% 53.23%  62.71% 58.59% (+8.52%)
Transformer
GRUGate 43.02% 70.52% 6375% 73.65% 5625% 64.58%  61.96% (+10.09%)
Transformer

is achieved by using the entire time course. Leaving out
the data from any time intervals will affect the classification
results. We remark that similar observations can be obtained
with other models, hence the results are omitted here.

In addition, we also assess the models with the data from
each individual subject. The results are shown in Table III.
For gated Transformers, we only evaluate on GRUGate
Transformer as a representative. From the table, we can see
that the model performance varies among subjects. The best
and worst accuracies are consistently achieved from Subject
4 and Subject 1, respectively, which to some degree indicates
the “data quality” for subjects. In particular, EEGNet and
EEG-ChannelNet cannot learn features for Subject 1 well.
More careful tuning or treatment of these two models on the
data of Subject 1 is required. The performance of GRUGate
Transformer is consistently higher than that of other models
on the data of any single subject. When comparing the
average accuracy with the performance that shown in Table I,
we can find that some models are robust to the data size
and distribution, including Bi-LSTM and three Transformer
models, where the difference is within 2%.

b) Motor imagery dataset: We now present results for
the classification task on the motor imagery (movement
intention) dataset. Unlike the brain-visual classification task,
we consider the cross-subject scenario in this experiment,
namely, the validation data and test data are from subjects
that are unseen in the training set. To this end, we randomly
generate six different splits of training, validation and test
data. Table IV shows the average accuracy and the variance
across six runs for each model.

Among non-Transformer models, EEGNet has achieved
the best mean accuracy and SyncNet also performs bet-
ter than other models. The performance for Mesh-Cascade
model is very low in the subject-wise experiments, which
is much different from the performance reported in [35]. In
[35], Mesh-Cascade outperforms EEGNet and SyncNet, and
achieves the state-of-the-art results, where the cross-subject

TABLE IV: EEG classification performance of state-of-the-
art models on motor imagery task. The results are averaged
across six runs with different subject-wise data splits.

Models Classification accuracy
CNN 49.52% (£2.91%)
Bi-LSTM 50.66% (£1.47%)
SyncNet 54.21% (£2.84%)
EEGNet 55.46% (£2.30%)
EEG-ChannelNet 52.77% (42.04%)
CRAM 46.68% (£2.43%)

Mesh-Cascade

31.60% (£2.01%)

Post-LN Transformer
Pre-LN Transformer
InputGate Transformer
OutputGate Transformer
HighwayGate Transformer
SigTanhGate Transformer
GRUGate Transformer

54.28% (£2.95%)
53.88% (£2.95%)
54.48% (£3.11%)
53.61% (£3.52%)
54.79% (£3.15%)
54.32% (£2.78%)
55.40% (+2.09%)

data is mixed, namely, data from the same subject can be
seen in training, validation and test sets. On the other hand,
for Transformer architectures, GRUGate Transformer has
achieved comparable results with lower variance in contrast
to EEGNet. However, we do not see improvement of Trans-
former models in this case. We suspect that Transformer-like
models are more powerful in higher frequencies, but perform
similarly to other state-of-the-art models in lower-frequency
brainwaves, e.g., delta to beta. The similar observation can
be obtained from Table I as well, but the hypothesis requires
further investigation, so we leave it as a future work.

IV. CONCLUSION

In this work, we have used the Transformer models with
gating mechanism for decoding human brain EEG signals.
The gated Transformers apply the attention mechanism to
learn long-term temporal dependencies of the EEG signals,
and also employ the gating mechanism to stabilize the
training process. Experiments on two datasets, i.e., brain-
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visual dataset and motor imagery dataset, have demonstrated
the effectiveness of the gated Transformer models over
multiple classes and subjects. The variants of Transformer
architectures and gating layer formulations also provide
customizability when developing BClIs in practice.

A natural extension of this work in the future is to
further evaluate the gated Transformers in other applications,
and incorporate them in end-to-end BCI development. In
addition, we want to investigate the factors that can impact
the performance of gated Transformers, such as band-pass
filtering frequencies and other pre-processing approaches, the
electrodes placement and device used to collect EEG data.
Moreover, it is also of interest to improve the explanability
of our models. For example, when predicting a class, the
models can also indicate which part of electrodes and which
range of the time course contribute most to the prediction.
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