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Abstract— The vascular topology is of vital importance in
building a chemotherapy model for the liver cancer in rats.
And segmentation of vessels in the liver is an indispensable
part of vessels’ topological analysis. In this paper, we
proposed and validated a novel pipeline for segmenting
liver vessels and extracting their skeletons for topological
analysis. We employed a dual-attention based U-Net trained
in a generative adversarial network (GAN) fashion to obtain
precise segmentations of vessels. For subsequent topological
analysis, the vessels’ skeletons are extracted and classified
according to their lengths and bifurcation orders. Based on
40 samples with carefully-annotated ground truth labels,
our experiments revealed consistent superiority in terms
of both segmentation accuracy and topology correctness,
demonstrating the robustness of the proposed pipeline.

Clinical relevance— This work provides a useful and practi-
cal tool for analyzing the topology of anticancer drug-diffused
vessels.

I. INTRODUCTION

Liver cancer has become a major killer in recent years. As
a predominant pathological type of liver malignant tumors,
hepatocellular carcinoma (HCC) accounts for 85%−90% of
primary liver cancers. Transcatheter arterial chemoemboliza-
tion (TACE) is the main therapeutic option for HCC [1]. To
effectively evaluate the effectiveness of anticancer drugs in
the TACE treatment, it is important to build a drug diffusion
model in vitro. Gao et al. [2] tried to build an ex vivo
liver chemotherapy model by hyalinizing a decellularized
rat liver and injecting anticancer drugs into liver vessels.
They then took photographs of the liver at regular intervals,
manually annotated the extent and skeleton of the drug-
diffused vessels, and measured the length, diameter and
area of the vessel branches. The entire process is time-
consuming since it involves a lot of manual work, and thus
it is necessary to design an automatic pipeline for analyzing
the drug diffusion process.

Accurate vascular segmentation is the first and most im-
portant step in the entire pipeline, which significantly affects
the topology of vessels. Recently, with the development of
deep learning, deep convolutional neural networks (CNNs)
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have been the main research tool for a wide variety of
biomedical image analysis problems [3] [4]. To enhance the
performance of CNNs, various backbones have been pro-
posed. For example, VGGNet [5] replaces large convolution
kernels with small stacking blocks of the same shape to
reduce the training parameters. To make the network deeper,
ResNet [6] stacks residual blocks along with skip connection.
Apart from these backbones, a variety of network structures
have also emerged, such as U-Net [7], LinkNet [8], FPN [9]
and so on.

The aforementioned methods mainly rely on pixel-wise
loss functions, and thus may generate discrete prediction
results with wrong topology. Generative adversarial networks
(GANs) attend to make the predicted output indistinguishable
from ground truth by alternatively training a discriminator
and a generator [10]. In the process of adversarial training,
the discriminator can automatically learn the continuous
topology of manual annotation as a supplement loss for the
pixel-wise loss. In addition to generative adversarial train-
ing, since the drug concentration within vessels gradually
decreases, it may result in blurry edges and endings. That
motivates the utility of an attention mechanism to focus on
important features and suppress unnecessary ones [11].

In such context, we propose a pipeline for liver vessels’
segmentation and topological analysis in the drug-diffusion
process of TACE, by taking GAN as a general framework
and incorporating a dual-attention module into U-Net as
GAN’s generator. After segmentation, we iteratively delete
redundant points to obtain the vascular skeleton, the leaf
nodes of which are then classified according to branch
length and bifurcation order to characterize the vessels’
topology. Fig. 1 shows the flowchart of our overall pipeline.
Experiments show that the proposed pipeline can generate
precise segmentation results with correct topology.
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Fig. 1. Flowchart of the overall pipeline.
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Fig. 2. Architecture of the generator in our proposed DAU-GAN.

II. METHOD

A. Image Preprocessing

The sample size of our dataset is 40, and thus data
augmentation is needed. A typically-employed data augmen-
tation approach is to randomly crop images into patches, but
experimental results turn out that this strategy works poorly
for our task. After exploration, we adopt random rotation and
flipping as well as random brightness and contrast adjustment
for data augmentation, resulting in 5460 images. Afterwards,
all images are normalized to be of zero mean and unit
variance.

B. Network Architecture

The network structure is a U-Net based GAN with a dual-
attention module incorporated, abbreviated as DAU-GAN.
It contains a generator (G) and a discriminator (D). G is
trained to produce a probability mask of vessels that cannot
be easily distinguished from “real” masks (the manually-
annotated ground truth), while D is trained to perform as
well as possible at detecting the generator’s “faked” outputs.

Architecture of the generator With its encoding-
decoding structure and skip connection, U-Net has greatly
succeeded in medical image segmentation tasks. As Fig. 2
shows, we choose U-Net as the backbone of our generator. To
have the network more properly focus on the target object,
we replace the simple skip connection in U-Net with two
attention-based feature refining blocks, namely the Channel
Attention Block (CAB) and the Spatial Attention Block
(SAB). They are arranged sequentially and generate feature
maps Mc and Ms respectively. Fig. 3 shows details of those
two blocks.

To exploit the inter-channel relationship of features, the
CAB squeezes the input feature map’s spatial dimension with
max-pooling and average-pooling operations. Then the two
pooled descriptors share multi-layer perceptron (MLP) with
one hidden layer. After that, we apply element-wise addition
to merge the output feature vectors and conduct the rectified
linear unit (ReLU) activation.

To aggregate channel information, the SAB conducts max-
pooling and average-pooling along the channel axis and
concatenate them to generate a feature descriptor. Then a
convolution layer is used to produce a spatial attention map,
following the ReLU activation.

Assume the input feature map is F, the overall flow can
be described as

F′ = Mc(F)⊗F,
F′′ = Ms (F′)⊗F′,

(1)

where ⊗ indicates element-wise product.
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Fig. 3. The two attention blocks in our proposed DAU-GAN.

Architecture of the discriminator There are five convo-
lution blocks in our discriminator. Each block consists of two
3×3 convolution layers followed by group normalization and
ReLU. There is a 2×2 max-pooling layer between every two
blocks. Finally, a fully connected layer and a sigmoid layer
are employed to determine the classification.

Objective function The loss function of GAN can be
formulated as

LGAN =Ex,y∼pdata (x,y)[logD(x,y)]

+Ex∼pdata (x)[log(1−D(x,G(x))],
(2)

where G tries to minimize LGAN against an adversarial D that
tries to maximize LGAN . The x, y respectively represent an
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original vascular image and the corresponding ground truth.
D maps a pair of input data into binary categories {0,1},
where 0 and 1 respectively denote the paired sample is either
model-generated or ground truth. G is designed to not only
fool D but also make the output be close to the ground truth.
Thus we also introduce the binary cross-entropy loss LSEG
between the ground truth and the automated prediction. The
overall objective function is Ltotal = LGAN +λLSEG. λ is
used to balance the two parts of the objective function. The
minimax objective function is argminG maxD Ltotal .

C. Topological Analysis

Skeleton extraction We extract the vascular skeleton to
describe the drug diffusion status at the specific moment of
photographing. Skeleton extraction is based on a thinning
algorithm that contains two sub-iterative processes [12].
One aims at deleting redundant points around the north-
west corner and south-east boundary. The other one aims at
deleting redundant points around the south-east corner and
the north-west boundary. In the end, only connected skeleton
of a single-pixel width is preserved in a binary skeleton
matrix, where 1 (0) represents skeleton (background).

Leaf nodes classification Classifying the vascular
branches into T classes according to the skeleton’s length
and bifurcation order can more accurately quantify the extent
of drug diffusion. Fig. 4 shows one representative example of
our topological analysis. The nonzero values in the skeleton
matrix from the previous step are divided into two parts: key
nodes (KN) and node-to-node edges. The KN can be further
divided into bifurcation nodes (BN) and leaf nodes (LN), as
shown in Fig. 4. All KN are incrementally numbered. Then
we build an undirected graph (Graph) with interconnected
KN and their corresponding edges. The number of pixels
on the edge represents the branch’s length. In the iterative
process, we automatically choose the KN located at the
vessel’s root as root nodes (RN), determine the lengths
between RN and LN with Dijkstra algorithm [13]. The
skeleton branch with the maximum length is defined as the
FIRST class skeleton. Each BN in the FIRST class skeleton
extends out a sub-skeleton, and we specify that BN as a new
RN of the sub-skeleton and identify the skeleton branch of
the maximum length as the SECOND class skeleton. The rest
are done in the same manner until T classes are calculated,
and we end up with the vascular branches’ pathways and
lengths of each class.

III. EXPERIMENTS

A. Datasets and Implementation Details

Our drug-diffused rat liver vascular dataset contains 40
images in total, each of which is 2056 × 2464 in size1.
The vessels were annotated by three experts. To ensure
consistency of manually annotating standards, one expert
marked the drug-diffused vessels, and the other two reviewed
and modified if necessary.

1This dataset will be published later. All experimental procedures were
approved by the Institutional Animal Care and Use Committee at the
Sourthern University of Science and Technology.
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Fig. 4. Representative example of vascular skeleton for topological
analysis. The white lines represent the vascular skeleton, and the colored
circles represent different vascular classes.

We employ a 4-fold cross-validation strategy. In the train-
ing process, we use Adam optimizer. The learning rate is
initialized as 1e-4. The coefficient λ is set to be 10.

B. Qualitative Evaluation

To prove the superiority of our proposed pipeline, we test
and compare the performance of four different networks:
FPN, U-Net, V-GAN [14], and the proposed DAU-GAN. For
FPN and U-Net, we use VGG16 as their backbone. V-GAN
without the attention module is used to prove the validity of
DAU-GAN. Fig. 5 shows qualitative comparisons of different
methods. The Graph is built based on interconnecting nodes,
and thus we only keep connected vessels of the maximum
size before skeleton extraction to avoid disconnected nodes.
To make a more intuitive comparison of the topological
structure, we thicken the skeleton in red and overlay it on the
predicted vascular segmentation. It can be clearly seen that
our proposed method produces results that are closest to the
ground truth, not only in segmentation but also in topology.

C. Quantitative Evaluation

Table I shows the quantitative comparisons of the afore-
mentioned four segmentation networks. The Dice Similarity
Coefficient (DSC) focuses on pixel-level similarity between
a segmentation result and its ground truth. The Average
Symmetric Surface Distance (ASSD) and Maximum Sym-
metric Surface Distance (MSSD) describe two types of
surface boundary distances between a segmentation result
and the ground truth. The Topology Similarity (TS) is defined
as |v1 − v2|/(0.5 × (v1 + v2)), where v1, v2 respectively
represent the total number of nodes belonging to a specific
class in the ground truth and the prediction, and we take an
average of the TS results of all class nodes.

Although the DSC of U-Net is much better than that of
LinkNet and FPN, the ASSD and MSSD of U-Net are high,
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Fig. 5. Qualitative evaluations of the topology of results from different methods.

indicating that U-Net is not very effective in segmenting
vascular endings. By applying U-Net in GAN as V-GAN,
all four indicators have improved. More importantly, our
proposed DAU-GAN, after incorporating both channel and
spatial attention blocks, achieved the best overall perfor-
mance.

TABLE I
QUANTITATIVE COMPARISON RESULTS.

Method DSC[%]↑ MSSD ↓ ASSD↓ TS ↓

LinkNet 82.80 34.13 6.23 3.68
FPN 82.93 40.78 6.40 2.61

U-Net 87.39 33.14 6.20 2.02
V-GAN 90.74 14.18 1.93 1.80

DAU-GAN (proposed) 91.22 13.12 1.87 1.33
* The ↑ and ↓ respectively denote the higher (the lower) the better.

IV. CONCLUSION

In this paper, we proposed DAU-GAN, a novel pipeline
for segmenting drug-diffused vessels and analyzing their
topological structure. To the best of our knowledge, this
study is the first one of such kind, due to the innovative
nature of the dataset used in this work. The neural network
was designed based on the GAN framework with U-Net
dual-attention blocks. Then we extracted the segmentation
results’ skeletons and classified them according to lengths
and bifurcation orders. Experiments showed the proposed
DAU-GAN generated precise segmentation results, in terms
of not only overlap accuracy but also topology correctness.
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