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Abstract— Major depressive disorder (MDD) is a common
mental illness characterized by a persistent feeling of low
mood, sadness, fatigue, despair, etc.. In a serious case,
patients with MDD may have suicidal thoughts or even
suicidal behaviors. In clinical practice, a widely used method
of MDD detection is based on a professional rating scale.
However, the scale-based diagnostic method is highly
subjective, and requires a professional assessment from a
trained staff. In this work, 92 participants were recruited
to collect EEG signals in the Shenzhen Traditional Chinese
Medicine Hospital, assessing MDD severity with the HAMD-
17 rating scale by a trained physician. Two data mining
methods of logistic regression (LR) and support vector
machine (SVM) with derived EEG-based beta-alpha-ratio
features, namely LR-DF and SVM-DF, are employed to
screen out patients with MDD. Experimental results show
that the presented the LR-DF and SVM-DF achieved F1
scores of 0.76±0.30 and 0.92±0.18, respectively, which have
obvious superiority to the LR and SVM without derived
EEG-based beta-alpha-ratio features.

Clinical relevance— The performance of data mining meth-
ods of LR and SVM to detect MDD are greatly improved with
the derived EEG-based beta-alpha-ratio features. Especially,
the SVM-DF with the best performance for MDD detection
can be potentially deployed in a medical decision support
system to aid physicians to screen out patients with MDD
and intervene in advance to prevent malignant events.

I. INTRODUCTION
The major depressive disorder (MDD) has become one

of the three major diseases worldwide, and its prevalence
is still on the rise [1]. It severely affects the patient’s
work, study, and everyday social life. Currently, the most
used diagnostic methods for MDD are mainly depended
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on professional depression rating scales such as the 17-
item Hamilton rating scale (HAMD-17) [2]. However, the
scale-based diagnostic methods are subjective and highly
relied on a trained physician. It is difficult for medical
providers like community and township hospitals to
conduct MDD assessments without a trained physicians.
Herewith, it has great significance for developing an
automatic MDD detection method with data mining
techniques to aid physicians to screen out patients with
MDD and intervene in advance.

EEG signals are also a widely used tool to diagnose
mental disorders [5], [7], which are formed by the summa-
tion of postsynaptic potentials occurring simultaneously
in many neurons in the brain, divided into delta, theta,
alpha, beta, and gamma bands. EEG signals also can
reflect the electrophysiological activity of brain nerve
cells to a certain extent [3], thus widely being used
in clinical practice applications. Bruder et al.[4] found
that depressed and non-depressed individuals exhibited
different EEG activity, which demonstrated that using
EEG signals to identify MDD is feasible. Thibodeau et al.
[5] described the specific patterns of association between
EEG signals and depression comprehensively. Hughes
et al. [6] discovered some abnormal brain electrical
activity displayed by patients with mood disorders.
Hosseinifard et al. [8] mixed multiple machine learning
algorithms to achieve a classification accuracy of 83.3%.
Bachmann et al. [9] used SASI(Spectral Asymmetry
Index Method) and HFD (Higuchi’s Fractal Dimension
Method) , achieving 85% classification accuracy in both
groups. Sang-Choong et al.[7] found a significant neg-
ative correlation between MDD and frequency band of
beta and gamma. Cai H et al. [10] used a pervasive
prefrontal-lobe three-electrode EEG system at Fp1, Fp2,
and Fpz electrode sites to collect EEG signals and
achieved MDD detection accuracy of 79.27% . Mahato
et al. [11] extracted features from EEG signals and
achieved the highest MDD detection accuracy of 88.33%
. Even though aforementioned MDD detection methods
obtained promising results, it is still on far for real clinical
practice.

In this work, first of all, two kinds of EEG-based
features are derived from alpha and beta frequency
band, namely beta-alpha-ratio features. Subsequently,
two kinds of data mining methods of logistic regression
(LR) and support vector machine (SVM) are employed to
detect MDD with EEG-based beta-alpha-ratio features.
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Fig. 1. 10-20 System of EEG electrode placement

Experimental results show that LR and SVM with
derived EEG-based beta-alpha-ratio features can achieve
promising performance, which have obvious superiority
to that without derived EEG-based beta-alpha-ratio
features.

II. Methods
A. Data acquisition

92 participants, who had been in more than two
weeks of mental disorder illness duration, conscious,
and did not get aphasia or mental retardation, were
recruited from the Shenzhen Traditional Chinese Hos-
pital with signed informed consent form (IRB Number
of 2017-8) to collect EEG signals and HAMD-17 rating
scores. According to the HAMD-17 criteria described in
subsequent section, 34 patients are with MDD versus
58 patients are without MDD. Each participant has
one entry, totally 92 entries are collected. We used
a 10-20 System of electrode placement to place scalp
electrodes, as shown in Fig. 1, and acquired smooth
EEG signals with the Nerron-spectrum-5 EEG device
for 30 seconds under closed-eye conditions. The Nerron-
spectrum-5 EEG device has totally 19 channel leads,
which are FP1-A1, FP2-A2, F3-A1, F4-A2, FZ-A2, C3-
A1, C4-A2, CZ-A1, P3-A1, P4-A2, PZ-A2, O1-A1, O2-
A2, F7-A1, F8-A2, T3-A1, T4-A2, T5-A1, and T6-A2.
Each channel-lead calculates EEG-related features auto-
matically based on rhythm waveform amplitude indexes
and rhythm index information in terms of frequency
bands of delta, theta, alpha, and beta. Therefore, 154
EEG-related features are obtained for each participant.
With additional demographic features of gender and
age, there are totally 156 features as base features for
subsequent processing and analysis.

B. Data preprocessing
According to previous studies [12], there exist a close

relationship between a beta-alpha ratio and depressive
performance, which is associated with EEG frequency
bands of alpha and beta. In this work, the EEG-related

features are derived by calculating the ratio between
beta band and alpha band on each channel-lead in terms
of EEG waveform amplitude indexes and rhythm index
information, which are defined to be:

Ar =
Aβ

Aα
(1)

Ir =
Iβ
Iα

(2)

where features of Ar and Ir are derived from extracted
features of EEG waveform amplitude indexes and rhythm
index information, respectively. Aβ and Aα are features
from EEG waveform amplitude indexes on beta and
alpha frequency bands. Iβ and Iα are features from EEG
rhythm index information on beta and alpha frequency
bands. A total of 40 EEG-based beta-alpha-ratio features
are derived. For reference labels used in this work,
patients are divided into two groups in response to
MDD severity based on HAMD-17 scores. One group
with HAMD-17 scores greater than 17 are defined to be
MDD, labeled as 1. Another group with HAMD-17 scores
no more than 17 are defined to be mild depression or
not with depression, labeled as 0 for LR-related models
but -1 for SVM-related models. In order to minimize
the scale difference among features, we standardized the
data on each feature using z-score standardization for
numerical data to shift different features distributions
to the uniform distribution. In addition, for the non-
numerical feature of gender, male is marked to be 1 and
female is to be 0.

High dimension of features would introduce too much
noise into data mining models, leading to poor perfor-
mance for MDD detection. To solve this problem, the
recursive feature elimination (RFE) method were used
[15]. Its main idea is that after the model training, weight
importance of all features is calculated and the feature
with the best importance is selected. The above process
is repeated until the selected features can achieve the
optimal performance for MDD detection. After RFE
feature selection process, there are 45 and 26 selected
features as inputs for LR and SVM models, respectively.
C. Data mining methods

1) LR method: LR [13] is a widely used classification
model, which utilizes Sigmoid function as a posteriori
probability distribution function to classify the input
data set. It can be used for both binary classification
problems and multi-classification problems. The LR is
with merits of less computation, interpretability, and
easy implementation. For the MDD detection problem,
it is a binary classification to discriminate patients with
MDD or not.

2) SVM method: SVM [14] is a kind of generalized
linear classifier that classifies data in a supervised way,
and its decision boundary is the maximum-margin hyper-
plane. Owing to the merit of human-interpretability, the
SVM used in this work is with a linear kernel function.
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TABLE I
Classification performance for MDD detection

Model Precision Recall Accuracy F1 score
LR 0.71±0.29 0.65±0.31 0.78±0.14 0.65±0.28
SVM 0.83±0.15 0.83±0.21 0.86±0.08 0.80±0.13
LR-DF 0.80±0.31 0.73±0.30 0.86±0.15 0.76±0.30
SVM-DF 0.95±0.15 0.90±0.21 0.96±0.10 0.92±0.18

III. Results and discussion
A. Environment

The presented models were implemented with python
3.7.0 and sklearn 0.22.2. All experiments were trained
and tested on a server equipped with a Intel i5-8265U
CPU and 8.0 GB memory.

B. Classification performance
In this work, tenfold cross-validation was implemented

to evaluate the performance of LR and SVM models
with metrics of precision, recall, accuracy, and F1 score.
As shown in Table I, it is observed that the presented
SVM and LR with derived EEG-based beta-alpha-ration
features, namely SVM-DF and LR-DF, have superiority
to SVM and LR, respectively. The LR-DF obtained
0.80±0.31, 0.73±0.30, 0.86±0.15, and 0.76±0.30 in terms
of precision, recall, accuracy, and F1 score, respectively.
The MDD detection performance of the LR-DF is greater
than that of the LR, over at least 8.0 %. The SVM-DF
achieved 0.95± 0.15, 0.90± 0.21, 0.96± 0.10, and 0.92±
0.18 in terms of precision, recall, accuracy, and F1 score,
respectively. The MDD detection performance of the
SVM-DF is greater than that of the SVM, over at least
7.0 %. It means that the derived EEG-based beta-alpha-
ratio features can greatly improve LR and SVM models’
performance for MDD detection. Among the LR-DF and
SVM-DF, the SVM-DF with much more capability of
processing small dataset has the superiority to the LR-
DF for MDD detection. The presented SVM-DF with
promising performance can be potentially deployed into
a medical decision support system to aid physicians to
screen out patients with MDD precisely.

C. Discussion
In this work, we proposed a method to screen out

MDD patients using features derived from EEG signals.
A linear kernel SVM model was used for classification,
which is less sensitive to distributions of classes in feature
space. Thus the model is more adaptable to real clinical
practice, where the patients’ information can be very
dispersed. As the dataset used in this work is rather small
and with high dimensionality, it is more appropriate
to use a linear kernel function than a Gaussian kernel
function.

It is well known to us that feature selection is a critical
step for data mining methods, particularly on dataset
with high dimensions. As shown in Fig. 2, the SVM-
DF performance for MDD detection varies greatly in

Fig. 2. SVM-DF: F1 score versus the number of selected features

response to the number for selected features as input. It
is noted that the SVM-DF obtains its best performance
for MDD detection when the number of selected features
with the RFE is 45, the description of which is shown
in the Table II. What’s more, a large proportion of the
derived EEG-based beta-alpha-ratio features are selected
after the RFE step, which indicates that the derived
EEG-based beta-alpha-ratio features are critical for data
mining methods for the task of MDD detection.

Meanwhile, the model weight importance of selected
features obtained in the SVM-DF is shown in Fig. 3.
The coefficients of the SVM-DF with a linear kernel can
be interpreted as indicators of feature importance. The
selected features of Iϑα , Aϑ

r , Aϑ
θ , Iϕr , Aϕ

δ , Aι
α, Iκα, Iκr ,

Aκ
r , Iρα, Iχr , Aχ

θ , Iλr , Aσ
δ , Iσθ , Iζθ , Iνα, Iνβ , Aν

θ , and Aς
α are

with positive weight importance, while remained selected
features are with negative weight importance.

IV. Conclusion
In this work, two popular data mining methods of

LR and SVM for MDD detection are presented. Exper-
imental results show that the derived EEG-based beta-
alpha-ratio features can greatly improve MDD detection
performance for the LR and SVM, which achieved the
best performance of 0.95± 0.15, 0.90± 0.21, 0.96± 0.10,
and 0.92±0.18 in terms of precision, recall, accuracy, and
F1 score, respectively. Compared with the LR and SVM
without the additional derived EEG-based beta-alpha-
ratio features, both of the LR-DF and SVM-DF have
much more power in MDD detection than the LR and
SVM with a big margin. The presented MDD detection
model with promising performance can be potentially
deployed into a medical decision support system to
help physicians to screen out patients with MDD and
intervene in advance to avoid malignant events.
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