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Abstract— a convolution neural network (CNN) architecture 

has been designed to classify epileptic seizures based on two-

dimensional (2D) images constructed from decomposed mono-

components of electroencephalogram (EEG) signals. For the 

decomposition of EEG, Hilbert vibration decomposition (HVD) 

has been employed. In this work, four brain rhythms – delta, 

theta, alpha, and beta have been utilized to obtain the mono-

components. Certainly, the data-driven CNN model is most 

efficient for 2D image processing and recognition. Therefore, 2D 

images have been generated from one-dimensional (1D) 

decomposed mono-components by employing continuous 

wavelet transform (CWT). Next, simultaneous multiple input 

images in parallel have been directly fed into the CNN pipeline 

for feature extraction and classification. For evaluation, the 

EEG dataset provided by the Bonn University has been taken 

into consideration. Further, a 5-fold cross-validation technique 

has been applied to obtain generalized and robust classification 

performance. The average classification accuracy, sensitivity, 

and specificity reached up to 98.6%, 97.2%, and 100% 

respectively. The results show that the proposed idea is very 

much efficient in seizure classification. The proposed idea 

resourcefully combines the advantages of HVD and CNN to 

classify epileptic seizures from EEG signal. 

Clinical relevance— Hilbert vibration decomposition, brain 

rhythms, continuous wavelet transform, scalogram, epileptic 

seizure, convolution neural network.  

I. INTRODUCTION 

The frequent occurring of epileptic seizures leads to 

disarray in the state of being active neurons, loss of 

awareness, and sensations [1–4]. Certainly, EEG based 

epileptic seizure detection is simple, low cost, reliable, and 

easy to use compared to other acquisition tools [3]. Generally, 

medical professionals inspect epileptic seizures by visual 

observation of long-recorded EEG signals, which is time-

consuming and error-prone [1–2]. Therefore, an automated 

classification of epileptic seizures using EEG signals can 

improve the diagnosis and treatment process [3–4]. In recent 

years, machine learning techniques have been extensively 

employed to classify epileptic seizures which usually depend 

on pre-defined hand-crafted features extracted from different 

domains such as time, frequency, frequency-time of EEG 

signal [1–6]. However, the EEG signal is non-stationary and 

non-linear. Hence, non-linear decomposition techniques, such 

as empirical mode decomposition (EMD) and Hilbert 

vibration decomposition (HVD) have been efficiently and 

successfully applied in epileptic seizures classification [5–6]. 

In recent times, the HVD extensively and successfully 

adopted in the classification of epileptic seizures as it is 

simple and efficient technique for the decomposition of non-

stationary and non-linear signals [5–6]. The HVD 

decomposes signal into a certain number of mono-

components (MC) with slowly varying instantaneous 

amplitude and frequency. Besides, it preserves the phase 

information in decomposed mono-components and also helps 

in seizure localization [5–7]. Additionally, the decomposed 

MC are extensively used to obtain insightful information, 

which has efficiently improved classification of epileptic 

seizures [5–6]. For example, in [5] work, seven MC have been 

decomposed by HVD from EEG of different brain rhythms to 

extract features. Then, least square-support vector machine 

(LS-SVM) classifier has been employed to classify epileptic 

seizures with an accuracy of 97.66%. Certainly, epileptic 

seizures detection can be improved further by investigating 

multiple mono-components of the EEG. 

Nowadays, CNN has been widely used in the field of 

biomedical signal and image processing [8–13]. The CNN 

architecture is the most emblematic approach for 2D image 

recognition [3]. Typically, data-driven CNN automatically 

and adaptability learns and derives relevant features from 

inputs [1–3]. In this view, various techniques have been 

adopted to construct 2D images from 1D signals [2–4]. 

Indeed, 2D images generation techniques and CNN have been 

frequently used to successfully classify complex biomedical 

signals [4]. The recent contributions of the CNN models for 

epileptic seizures classification are remarkable [2–6] [8–13]. 

For example, in [4], the CWT has been used to generate 2D 

images from EEG segment. Thereafter, a CNN model has 

been employed to detect epileptic seizures. In [2], a trained 

CNN model has used 2D images captured from EEG 

recordings to predict epileptic seizures with an accuracy of 

94.8%. In [7], frequency-based features have been extracted 

from brain rhythms and directly fed into a deep neural 

network (DNN) to detect seizures. In [9], raw EEG signals 

were directly fed into a 13 layered CNN model and achieved 

accuracy of 88.7%.  

Motivated from the aforementioned works, HVD and 

CNN have been adopted to classify epileptic seizures using 

EEG recording of different brain rhythms. The contribution 

of this work are as follow; 

 The relevance of brain rhythms in epileptic seizure 

classification has been addressed. 

 Decomposition of EEG has been explored by HVD 

which provides better frequency resolution and preserve 

the phase information. 
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 Generation of 2D images from EEG signals has been 

conducted by CWT, which preserves the temporal 

information. 

 A CNN pipeline has been designed to accept 

simultaneous multiple image in parallel as inputs. 

This paper has been structured as follows: section II 

consists of introduction of proposed method followed by 

experimental setup in Section III. Next, section IV discusses 

the experimental performance. Finally, the conclusion of 

proposed idea discuss in section V. 

II. PROPOSED METHOD 

The outline of the proposed idea has been displayed in Fig. 

1. First, different brain rhythms (BR) have been obtained from 

EEG. Thereafter, the HVD has been utilized to decompose 

EEG into multiple MCs. Next, a 2D image from each MC has 

been generated by CWT. Finally, simultaneously 2D images 

of multiple MC in parallel have been directly fed into the 

CNN pipeline to discriminate the epileptic seizures. The 

description of the proposed method in the below: 

A. Processing and Brian Rhythms 

Four BR — δ (0.5 to 4 Hz), θ (4 to 8 Hz), α (8 to 12 Hz), 

and β (12 to 30 Hz) have been chosen for analysis of epileptic 

seizures [5]. For this purpose, a band pass filter with 

appropriate cut-off frequencies has been used [10]. Certainly, 

it is convenient to design a seizure classification method by 

considering EEG segments, which could minimize the 

computational burden. Therefore, EEG recordings have been 

segmented with a predefined duration [3–6]. Now, HVD has 

been used to decompose mono-components from each of the 

EEG segments. 

B. Hilbert Vibration Decomposition (HVD) 

The HVD technique decomposes the non-stationary and 

nonlinear signal into multiple MC [5–7]. The decomposition 

process mainly works in three steps — first measuring the 

instantaneous frequency of signal followed by detection of the 

synchronous envelope and finally, MC with the highest 

energy is separated from the main signal [7]. The HVD works 

iteratively and in each iteration, the largest components 

having slowly varying frequency component is decomposed 

from initial signal. The Hilbert transform is employed to 

obtain analytical signal (1) of multicomponent signal (x(t) = 

x1, x2, x3, …xn). 
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where, As(t) represents the analytical signal of x(t). The A(t) 

and ϕ(t) denotes instantaneous amplitude and phase of x(t) 

respectively. The x͂(t) (2) is Hilbert transform of signal x(t). 
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where, P.V. is Cauchy principal value. Now, the 

instantaneous frequency, ω(t) = (dϕ(t))/d(t) has been 

calculated. The main signal can be represented by (3), where 

Al(t) and ωl(t) refer instantaneous amplitude and frequency of 

the lth component respectively.  
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Next, synchronous envelope and separation of MC have been 

evaluated. Eventually, the largest energy component (xl-1(t) = 

xl(t)– x1(t)) has been detracted from main signal, where, xl-1 is 

residue that hold the lowest energy and can be disintegrated 

during succeeding iteration. Now, 2D images have been 

generated from each decomposed MC of EEG segment for 

considered BR. 

C. 2D Image Construction 

The CWT has been employed to construct 2D images 

from decomposed MC of EEG. The CWT depicts signal 

activities that vary across time within a range of time scales. 

[4]. The absolute value of the CWT has been used to represent 

the 2D scalogram texture [5]. Meanwhile, CWT provides long 

and short time windowing for low and high frequency signals 

respectively. Hence, low and high-frequency signals can be 

better analyzed. The CWT of a signal can be obtained by (4); 
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where, WCx(m, n), m, and n depict wavelet coefficients, 

scaled, and position parameters respectively. The ψ* and x(t) 

is the conjugate of wavelet function and time series 

respectively. The Morlet wavelet function which is 

appropriate for spectral analysis of complex signal has been 

used in this work. Further, for each MC a scalogram image 

has been generated which has been used as input to the CNN 

model. 

 

Fig.1. The framework of the proposed method for classification of epileptic seizure from EEG, where MC1, MC2, and MC2 depicts decomposed mono-

components of an EEG segment.  
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D. Convolution Neural Network Architecture 

The CNN has been extensively and successfully employed 

in epileptic seizure classification [1–3]. The CNN architecture 

and its layers of hierarchies have been shown in Fig. 2. As 

shown, there are convolution, batch normalization, max-

pooling, fully-connected, and output layers [2–4]. The 

convolution layer is the core block of CNN that have learnable 

kernels, which perform convolution operation with input to 

extract insightful information. Next, the outcome of the 

convolution layer is passed through the ReLU function, which 

reduces the complexity as well as allow the model to learn 

quickly and perform much better. Further, the batch 

normalization (BN) layer has been used to improve stability, 

convergence speed, and performance. Besides, a Max-pooling 

layer is used to learn the sharp and smooth features. In 

addition, the dropout layer has been employed which reduces 

the over-fitting issue and prevents to optimize the weights of 

all neurons in a layer synchronously. Finally, the output layer 

having a sigmoid function computes the probability of 

appropriate classes based on the outcome of the fully 

connected layer. Certainly, the CNN can extract the abundant 

number of features from simultaneous multiple inputs images 

in parallel [3–4]. 

III. EXPERIEMNTAL METHODOLOGY 

A. Data  

For experimental validation, the Bonn University EEG 

dataset has been taken into account [14]. The dataset consists 

of five sets of recorded EEG signals— A, B, C, D, and E. Each 

set contains 100 channel files of EEG with a duration of 23.6s. 

The sampling rate has been tuned to 173.61Hz with a 12-bit 

resolution. Healthy volunteers were mediated to record EEG 

signals of sets A and B. Besides, sets C, D, and E consist of 

EEG recordings of the patients having epileptic seizures 

activities. However, EEG signals of sets C and D have been 

recorded between occurrences of seizure events, which 

behave like seizure-free signals. The set E encloses only 

epileptic seizures recordings. The EEG dataset has been 

clustered into three classes —normal (A, B), interictal (C, D), 

and ictal class (E). Empirically, one set from each class has 

been selected to evaluate the proposed idea. The selected sets 

are — normal (A), interictal (D), and ictal (E). 

B. Experiment 

The band pass filter with cut-off frequencies has been 

employed to obtain different BR. Further, the EEG signals 

have been segmented based on a duration of 5.9s with 20% 

overlap. Empirically, first three MCs (MC1, MC2, and MC3) 

from each EEG segment have been decomposed by HVD. 

After that, 2D images from each MC have been constructed 

by CWT. In Fig. 3, MC of normal, interictal, and ictal with 

their respective scalogram image has been displayed. In total, 

1500 scalogram images have been constructed from each set. 

As for the CNN pipeline, the elementary need is a fixed size 

of inputs images, therefore all images before feeding into 

CNN have been resized to 128x128 resolution. 

The CNN pipeline has been trained with Adam optimizer, 

while other parameters learning rate, batch size, and the 

number of epochs have been tuned for all classification tasks 

to 0.00001, 64, and 20 respectively. Finally, classification 

tasks have been performed on the group– A vs. E, D vs. E, 

and A vs. D. In addition, a 5-fold cross-validation technique 

has been used which reduces the overfitting problem, as well 

as minimizing bias and variance in the dataset. The samples 

have been arbitrarily split into five subsets (K1, K2, K3, K4, 

and K5) and each subset keeps the proportionate distribution 

of categories in the dataset. Indeed, four subsets have been 

used to train the CNN model and the rest subset holds out for 

testing. Additionally, four subsets that are used to train the 

model have been divided in the ratio of 80:20 for training and 

validation set. 

IV. RESULTS AND DISCUSSION  

In this work, binary classification task has been performed 

on above discussed groups for each BR. Herein, the accuracy 

(ƞ) (5), sensitivity, Se (6), and specificity, Sp (7) have been 

evaluated to observe the classification performance.  
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where, TN, TP, FN, and FP represents true negative, true 

positive, false negative and false positive respectively.  

 

Fig. 2. The CNN pipeline for classification of epileptic seizures using 2D 

images constructed from decomposed mono-components of EEG. 

 

 
Fig. 3. The 2D scalogram images of a decomposed MC from (a) normal 

(b) interictal, and (c) ictal EEG segment of β respectively. 
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The ƞ achieved up to 98.6%, 96.1%, 96.2%, and 92.6% to 

discriminate normal and ictal for δ, θ, α, and β respectively. 

The δ band has achieved maximum classification ƞ, Se, and Sp 

in comparison to other BR. In case of interictal and ictal for 

δ, θ, α, and β band, ƞ has been recorded up to 100%, 96.2%, 

98.0%, and 99.1% respectively. In Fig. 4, the average ƞ, Se, 

and Sp obtained for the aforementioned groups of BR has been 

displayed. In addition, Table I summarized the ƞ, Se, and Sp 

achieved for classification of A-E (δ), D-E (α), and A-D (β) 

when different subsets have been used for testing, in which 

the first column depicts the subset used for the test. The 

experimental results show that the proposed method is 

efficient and suitable for the classification of epileptic 

seizures. Further, a comparative study has been conducted in 

concerned with recent machine learning algorithms and the 

results have been summarized in Table II. Therein, observed 

that the proposed method performance is remarkable, 

efficient, and better than other works. 

V. CONCLUSIONS  

The EEG recording of four brain rhythms — delta, theta, 

alpha, and beta has been utilized for the analysis of epileptic 

seizures. The efficient and simple HVD has been employed to 

decompose the EEG into three mono-components. Certainly, 

HVD is suitable for the analysis of narrow as well as 

wideband signals with better frequency resolution. Next, 

CWT has been applied to construct 2D images from each 

mono-component. Finally, 2D images have been fed to the 

CNN pipeline to perform both feature extraction and 

classification. The proposed idea shows the ability to classify 

epileptic seizures of different brain rhythms with favourable 

performance. 
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Fig. 4. The average η, Se, and Sp obtained by the CNN pipeline after 

employing 5-fold cross-validation technique on different classification 

groups of brain rhythms. 

 

TABLE I: TESTING OF MODEL WITH DIFFERENT SUBSETS 

BR δ α β 

ST 
A – E D – E A – D 

ƞ Se Sp ƞ Se Sp ƞ Se Sp 

K1 100 100 100 90.0 80.0 100 95.5 92.0 99.0 

K2 100 100 100 100 100 100 100 100 100 

K3 93.0 86.0 100 100 100 100 78.0 99.0 57.0 

K4 100 100 100 100 100 100 99.5 99.0 100 

K5 100 100 100 100 100 100 99.5 99.0 100 

Note: ST: subset holdout for testing. 

 
TABLE II: A COMPARATIVE STUDY 

Works Methods 
Performance (%) 

ƞ Se, Sp 

George et al. [2] EEG CNN 94.8 - - 

Mutlu et al. [5] HVD, LS-SVM 97.6 97.0 96.5 

Mutlu et al. [6] HVD, En, CNN 96.3 - - 

Gao et al. [8] EEG, RQA, CNN 92.2 91.8 92.0 

Acharya et al. [9] EEG, CNN 88.7 90.0 95.0 

David et al.[11] EEG, RNN 91.3 91.8 90.5 

Daoud et al.[12] EMD, CNN 98.6 - - 

Akyol et al., [13] SEA based DNN 97.2 93.1 98.2 

This work BR, HVD, CNN 98.6 97.2 100 

Note: En: entropy, RNN: recurrent neural network, RQA: recurrence 

quantification analysis, SEA: stacking ensemble approach.  
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