
  

 

Abstract— The effective classification for imagined speech 

and intended speech is of great help to the development of 

speech-based brain-computer interfaces (BCIs). This work 

distinguished imagined speech and intended speech by 

employing the cortical EEG signals recorded from scalp. EEG 

signals from eleven subjects were recorded when they produced 

Mandarin-Chinese monosyllables in imagined speech and 

intended speech, and EEG features were classified by the 

common spatial pattern, time-domain, frequency-domain and 

Riemannian manifold based methods. The classification results 

indicated that the Riemannian manifold based method yielded 

the highest classification accuracy of 85.9% among the four 

classification methods. Moreover, the classification accuracy 

with the left-only brain electrode configuration was close to 

that with the whole brain electrode configuration. The findings 

of this work have potential to extend the output commands of 

silent speech interfaces. 

 

I. INTRODUCTION 

Brain-computer interface (BCI) is a communication 
system that does not rely on the normal output pathways 
composed of peripheral nerves and muscles [1]. It directly 
connects the human or animal brain with devices, and 
realizes the control of the machines through the acquisition 
and processing of brain activity signals. 

The field of speech-based BCIs has rapidly developed in 
recent years [e.g., 2-7], as speech-based BCIs have several 
advantages over the traditional BCIs. Speech is one of the 
most common and intuitive means of communication for 
human beings in daily life, and BCI users will feel more 
natural, comfortable and easier to operate the speech-based 
BCIs. It can help patients with language disorders or locked-
in syndromes to communicate in a more direct and effective 
way. On the other hand, speech contains massive and 
abundant information, and decoding different speech can 
produce a large variety of output commands in BCI systems. 

Recently, lots of inspiring studies have been shown in 
speech-based BCIs, such as speech reconstruction from 
physiological signals when people listen or speak [2-4], and 
classification of different imagined speech tasks [5-7]. 
However, few studies focused on the classification of 
different categories of speech. Herff et al. utilized fNIRS 
signals to recognize three different speaking modes: spoken 
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speech, silently uttered speech and imagined speech, while 5 
subjects were asked to produce speech of sentences [8]. The 
accuracies of pairwise classification were between 65% and 
80%, and the average classification accuracy for three 
speaking modes was 61.0%. In Diener et al.’s study, 
electromyographic (EMG) signals were recorded from 6 
electrodes attached to the skin surfaces of the face and throat 
which were involved in articulation [9]. Three different 
speaking modes (i.e., audible speech, whispered speech and 
silent speech) were classified and the average accuracy for 
ternary classification was 58.4%. In our previous work [10], 
three speech modalities (i.e., spoken speech, intended speech 
and imagined speech) were classified by employing cortical 
EEG signals. The average ternary classification accuracy was 
66.0%, while the pairwise classification accuracy ranged 
from 71.5% to 85.7%. These studies made a preliminary 
investigation on the classification of different categories of 
speech, but no study has compared the performances of 
different classification methods for silent speech based BCIs 
or investigated the possibility of speech category 
classification using limited electrodes.  

Intended speech and imagined speech are two modalities 
in Silent Speech Interface (SSI) [11]. Intended speech means 
that the speaker silently utters with opened mouth and no 
audible voice is produced, but it involves parts of the 
articulation. Imagined speech does not involve any actual 
articulation, hence no actual sound is produced and the 
speaker just imagines the sound in their mind internally. The 
classification of these two speech modalities could extend the 
output commands for speech-based BCIs. In other words, a 
BCI system could first identify the categories of speech the 
user conducts (i.e., intended speech or imagined speech), and 
then classify the content of speech tasks (e.g., /a/, /u/, or /i/). 
The increase of output commands in silent speech based 
BCIs will be of great help to those patients who are unable to 
produce audible speech. 

The aim of this work was to assess and compare the 
effects of different classification methods and electrode 
configurations on the classification of intended speech and 
imagined speech from EEG signals. Feature extraction and 
classification methods in time, frequency and spatial domains 
were compared to find the method that yielded the highest 
accuracy. Besides, the effects of different electrode 
configurations were assessed on the classification 
performance when only using limited electrodes. 

II. METHODS 

A. Participants 

Four female and seven male participants (ranging from 20 
to 30 years old) were recruited to participant in this 
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experiment. All participants were native Mandarin-Chinese 
speakers, in good health condition and with no history of 
neurological or psychological disorders. Informed consents 
were signed by all participants and the study was reviewed 
and approved by the Research Ethics Committee of Southern 
University of Science and Technology.  

B. Stimulus and experimental paradigm 

The stimuli were 70 Mandarin-Chinese syllables with 
different vowels, consonants and tones. The experiment 
consisted of 5 blocks, and each block contained 70 trials in 
which stimuli were pseudo-randomly selected in different 
trials. The experimental paradigm is presented in Fig. 1. 
Participants pressed any key to start the experiment when 
they were ready. Each trial consisted of 5 successive periods: 
1) A 3-second rest period, during which the participants were 
instructed to look at a blank screen, think nothing and restrain 
any movements. 2) A 1.5-second listen period, during which 
the auditory stimulus (recorded at a sampling rate of 16 kHz) 
pronounced by an adult female native Mandarin-Chinese 
speaker was presented to participants with an earphone. 3) A 
2-second imagined speech period, during which a ‘+’ symbol 
appeared at the center of the screen till the period ended, and 
the participant was instructed to stare at the symbol and 
imagine the pronunciation of the stimulus once without any 
involvement of vocalization. 4) A 2.5-second intended 
speech period, during which a ‘*’ symbol appeared, and the 
participant was instructed to stare at the symbol and silently 
utter the stimuli with her/his mouth opened and without 
producing any audible speech. 5) A 2.5-second spoken 
speech period, during which a ‘#’ symbol appeared, and the 
participant was instructed to stare at the symbol and speak 
out the stimulus loudly. There are 1-s gaps between the 
imagined speech period and the intended speech period, and 
between the intended speech period and the spoken speech 
period for period transition. After finishing the five periods of 
a single trial, the participant could take a short break before 
pressing the button to go to the next trial. All symbols 
presented in the screen were in the same font size. The 
duration of each block was about 20 minutes. The 
participants were seated comfortably in an acoustically and 
electrically shielded chamber during the experiment. 

C. EEG data recording and pre-processing 

The EEG data were recorded with a 64-channel elastic 
cap (Neuroscience Inc.), which was placed at specific 
positions following the extended international 10-20 system. 
The reference electrode was placed at the top of the nose and 
the ground electrode was attached to the forehead. During the 
experiment, the impedance between any recording electrode 
and reference electrode was maintained below 5 kΩ. The 

recorded EEG data were sampled at 500 Hz. The participants 
were asked to minimize their movements during the 
recording in order to avoid possible motion artifacts. 

All EEG data were preprocessed with EEGLAB toolbox. 
The raw data were first re-referenced using the electrodes at 
contralateral mastoid, and then band-pass filtered between 1 
Hz and 30 Hz. Independent Component Analysis (ICA) was 
applied to remove artifacts during the recording (e.g., 
electrocardiographic activities, eye blinks, horizontal eye 
movements, etc.). After the artifact removal, the epochs in 
the imagined speech periods and the intended speech periods 
were extracted between 100-ms pre-stimulus and 2000-ms 
post-stimulus, and then corrected with the baseline of 100-ms 
pre-stimulus. Considering that the time intervals for imagined 
or intended speech were generally less than 1000 ms, the 
EEG data used for classification were finally extracted 
between 0 ms and 1000 ms. One of the participants was 
removed from analysis because of the poor data quality. 

D. Classification 

Four different classification methods were implemented 
and their performance to classify intended speech and 
imagined speech was compared. 

The first method is the Common Spatial Pattern (CSP) 
based method, which is widely used and has achieved good 
performance in motor imagery. The CSP method is a spatial 
domain feature selection method that uses spatial filters to 
maximize the discriminability of two classes [12]. After 
applying the CSP algorithm, the extracted features with a 
dimension of 16 were trained and classified by a Support 
Vector Machine (SVM) in this work.  

The second method is the time-domain based method 
adopted by Min et al. [5]. Each epoch was cut into several 
time segments with 0.2-s length and 0.1-s overlap. Mean 
value, variance, standard deviation, and skewness of those 
four features of each channel were extracted within each time 
segment. Four features in each channel were transformed into 
a single column feature vector from end to end. Because the 
dimension of the single column feature vector was too large, 
a Lasso estimate was applied to reduce the dimension of the 
feature vector. Then an Extreme Learning Machine (ELM) 
was used for feature vector classification, and the majority of 
the predicted labels of time segments within a single epoch 
was set as the final label of the epoch. 

The third method is the frequency-domain based method 
adopted by Sereshkeh et al. [6]. Discrete wavelet transform 
(DWT) features were extracted from each epoch using the 
Daubechies-4 (db4) wavelet. The root-mean-square and 

 
Figure 1. The experimental paradigm. The experiment periods are indicated at the top and corresponding screen displays are shown at the bottom. 
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standard deviation of the coefficients from different DWT 
decomposition level were extracted as features. Then, an 
artificial neural network, which had one hidden layer with 10 
hidden units, was used for classification. 

The fourth method is the Riemannian manifold based 
method [7]. Similar to the CSP based method, features in 
spatial domain were extracted. The covariance matrix of each 
epoch was first calculated and the covariance matrices were 
treated as sample points in the Riemannian space. Then these 
samples were projected into the Riemannian tangent space 
and then classified by Linear Discriminant Analysis (LDA). 

For each participant, 80% of epochs were randomly 
chosen as a training set, and the rest 20% were chosen as a 
testing set for performance evaluation. This procedure was 
repeated for 20 times and the average of classification 
accuracies was calculated for each participant. 

III. RESULTS 

Four methods were compared to search the best method 
to classify imagined speech and intended speech, and their 
classification results are presented in Table 1. It is shown that, 
among the four methods tested, the Riemannian manifold 
based method achieved the highest average classification 
accuracy, i.e., 85.9%. The CSP based method yielded a 
relatively good result, i.e., 81.6%, which was slightly inferior 
to that of the Riemannian manifold based method. The 

Sereshkeh’s and Min’s methods gave lower average 
classification accuracies of 74.4% and 68.0%, respectively.  

In order to investigate the effect of utilizing limited 
electrodes to classify imagined speech and intended speech, 
common spatial patterns were used to select channels. 
Figures 2 and 3 show the first four pairs of common spatial 
patterns of participants s3 and s10, respectively, for 
distinguishing imagined speech and intended speech. The 
four patterns of CSP A1-A4 at the top row represent the first 
four patterns for imagined speech, and CSP B1-B4 at the 
bottom row represent the first four patterns for intended 
speech. In Fig. 2, CSP A1-A4 of participant s3 are relatively 
flat, and no brain area is activated evidently during imagined 
speech. In contrast, obvious activation is observed in the left 
hemisphere in CSP B1, B2 and B3 during intended speech. 
Similar phenomena could also be seen in the topological 
maps of participant s10 as shown in Fig. 3, where CSP A1-
A4 show no obvious activation during imagined speech, 
while CSP B1 and B3 show distinct patterns in the left 
hemisphere during intended speech. 

 
Figure 2. Common spatial patterns of participant s3 for distinguishing 

imagined speech and intended speech. The top and bottom rows 

represent the first four patterns for the imagined speech and the 

intended speech, respectively. 

 
Figure 3. Common spatial patterns of participant s10 for distinguishing 

imagined speech and intended speech. The top and bottom rows 

represent the first four patterns for the imagined speech and the 
intended speech, respectively. 

 

TABLE 1. Classification results of intended speech and imagined for four 
different methods. 

Subject 
ID 

Riemannian 
based 

method (%)  

CSP 
based 

method 
(%) 

Min’s 
method 

(%) 

Sereshkeh’s 
method (%) 

s1 94.8 90.6 67.2 78.1 

s2 93.0 92.8 68.7 78.2 

s3 91.2 89.0 77.9 85.9 

s4 77.8 64.9 66.7 70.0 

s5 91.9 84.8 67.1 74.4 

s7 72.5 69.9 57.2 63.0 

s8 80.1 75.0 59.7 59.7 

s9 70.0 66.2 59.0 59.5 

s10 94.1 93.0 82.4 90.8 

s11 94.0 89.9 74.7 84.3 

Avg. 85.9 81.6 68.0 74.4 

Std. 9.7 11.4 8.3 11.1 

 

TABLE 2. Average classification results across all participants for two 
different electrode configurations with the Riemannian manifold based 
method. 

 left brain (%) whole brain (%) 

Acc. 82.8 85.9 

Std. 10.3 9.8 

 

 
Figure 4. Two adopted electrode configurations. The red dots 

represent the selected electrodes in the configuration. 
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The above-mentioned findings suggested that the left 
hemisphere was more strongly activated in intended speech 
than in imagined speech and the difference of two speech 
modalities mainly laid in the left hemisphere. For this reason, 
the left brain electrode configuration and the whole brain 
electrode configuration were compared to assess whether 
effective classification could be achieved with electrodes 
only located in the left hemisphere. Two adopted electrode 
configurations are shown in Fig. 4. With the Riemannian 
manifold based method, the average classification results in 
the two different electrode configurations are presented in 
Table 2. It is shown that the classification accuracy with the 
left-only brain electrode configuration is 82.8%, which is 
slightly lower than 85.9% with the whole brain electrode 
configuration.  

IV. DISCUSSION AND CONCLUSION 

This work distinguished imagined speech and intended 
speech by employing the cortical EEG signals recorded from 
scalp. It is shown in Table 1 that the classification 
performance of the Riemannian manifold based method and 
the CSP based method outperformed that of the Min’s and 
Sereshkeh’s methods, which could be probably attributed to 
the obvious difference observed between the spatial features 
of the EEG signals of imagined speech and intended speech. 
The difference of EEG features between two speech 
modalities may not be distinctly observed in time domain or 
frequency domain but in spatial domain. Furthermore, the 
Riemannian manifold method yielded a slightly better 
classification accuracy than the CSP based method, 
indicating the robustness against noise for the Riemannian 
manifold based method as suggested in early studies [e.g., 
13].  

Intended speech could be treated a truncated version of 
spoken speech, because intended speech includes nearly 
intact articulation but without actual sound production. In 
[14], fMRI experiments indicated that spoken speech showed 
greater response than imagined speech in left premotor cortex, 
left primary left insula, and left superior temporal gyrus. In a 
word production experiment using ECoG signals [15], it was 
found that Wernicke’s area and Broca’s area in the left brain 
were activated during the production of spoken speech rather 
than imagined speech. The above-mentioned studies may 
support that the difference of intended speech and imagined 
speech is mainly located in the left hemisphere, which 
dominates the speech production processing. This could also 
partially explain why the classification accuracy with the 
electrodes only in the left brain is almost as good as that with 
all electrodes, as shown in Table 2. 

In conclusion, this study investigated the effects of 
classification methods in different domains and electrode 
configurations on the classification of intended speech and 
imagined speech using EEG signals. Four classification 
methods were compared, and the Riemannian manifold based 
method yielded the best average classification accuracy 
among all methods tested, manifesting the importance of 
spatial-domain features over time- or frequency-domain 
features. Furthermore, the findings in this work indicated that 
a good classification accuracy could be achieved when only 
using the electrodes in the left hemisphere. The effective 

classification for imagined speech and intended speech has 
potential to extend the output commands of speech based 
BCIs, particularly in silent speech interfaces, in the future. 
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