
  

  

Abstract—Alzheimer’s disease (AD) is the most prevalent 

neurodegenerative disorder and the most common form of 

dementia in the elderly. Because gene is an important clinical 

risk factor resulting in AD, genomic studies, such as 

genome-wide association studies (GWAS), have widely been 

applied into AD studies. However, main shortcomings of GWAS 

method were that hereditary deletions were evident in the 

GWAS studies, which resulted in low classification or prediction 

abilities by using GWAS analysis. Therefore, this paper 

proposed a novel deep learning genomics approach and applied 

it to discriminate AD patients and healthy control (HC) subjects. 

In this study, we selected genotype data of 988 subjects enrolled 

in the ADNI, including 622 AD patients and 366 HC subjects. 

The proposed deep learning genomics (DLG) approach was 

composed of three steps: quality control, SNP genotype coding, 

and classification. The Resnet framework was used as the DLG 

model in this study. In the comparative GWAS analysis, APOE 

ε4 status and the normalized theta-value of the significant SNP 

loci were seen as predictors to classify genetically using Support 

Vector Machine (SVM). All data were divided into one training 

& validation group and one test group. 5-fold cross-validation 

was used in 500 times. Finally, we compared the classification 

results between DLG model and traditional GWAS analysis. As 

a result, the accuracy, sensitivity, and specificity of  

classification for traditional GWAS analysis was 

71.38%±0.63%, 63.13%±2.87% and 85.59%±6.66% in the test 

group; while the accuracy, sensitivity, and specificity of 

classification for DLG model was 92.65%±4.80%, 

85.00%±16.25% and 97.10%±4.38% in the test group. Hence, 

the DLG model can achieve higher accuracy and sensitivity 

when applied to AD. More importantly, we discovered several 

novel genetic biomarkers of AD, including rs6311 and rs6313 in 

HTR2A, and rs690705 in RFC3. The roles of these novel loci in 

AD should be explored future. 
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I. INTRODUCTION 

Alzheimer's disease (AD) is the most common type of 
dementia and is an irreversible, progressive brain disorder 
typically beginning with mild memory loss; later it can 
seriously impair an individual’s ability to carry out daily 
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activities. It has been widely recognized and emphasized that 
early detection of AD is beneficial.  

Among factors that influence AD progression, common 
genetic variants are the major risk factors [1]. Right now, 
sequencing and omics analysis techniques have been widely 
used in this issue, such as advanced genome-wide association 
studies (GWAS) and whole genome sequencing (WGS) 
studies [2]. For instance, APOE was proven as the most 
strongly associated AD risk gene in the omics analysis. 
Besides, recent studies of the Alzheimer's Disease 
Neuroimaging Initiative (ADNI) GWAS data have related 
known AD risk genes to differences in rates of brain atrophy 
and biomarkers of AD in the cerebrospinal fluid [3]. 
Therefore, omics analysis, especially GWAS analysis, has 
shown general advances in AD research. 

 However, it is still under exploration on how to analyze 
AD progression utilizing original genomics data. First of all, 
most GWAS studies focused to identify significant genetic 
loci and used these significant loci for future analysis. 
However, these loci that showed strongest associations with 
the disease may be not generally the causal Single Nucleotide 
Polymorphisms (SNP). Secondly, hereditary deletions were 
evident in the GWAS studies, which resulted in low 
classification or prediction abilities of the disease by using 
GWAS analysis. Thirdly, traditional GWAS analysis required 
a plenty of prior knowledge and hand coding, which results in 
relatively low distinction and the exhaustion of time and 
energy. Therefore, alternative analytical tools were required 
to drive novel hypotheses and models in this topic. 

 Deep learning algorithms can embed the computation of 
features automatically to yield end-to-end models to discover 
relevant features of high complexity [4]. In recent studies, 
deep convolutional neural networks have been used to predict 
various molecular phenotypes on the basis of DNA sequence 
alone,such as classifying transcription factor binding sites, 
predicting molecular phenotypes such as DNA methylation 
and gene expression [5,6]. Hence, in this work, we aim to 
propose a deep learning genomics (DLG) approach to replace 
traditional GWAS analysis and apply DLG to seek novel 
genetic biomarkers of AD susceptibility.  

II. MATERIALS AND METHODS 

A. Experimental framework 

The workflow of this study was shown in Fig. 1, which was 
composed of three steps. First, we processed quality control 
and conducted SNP genotype coding for satisfactory SNP 
genotype data. Second, we presented the deep residual 
network Resnet34 for the transfer learning of DLG. The goal 
of the deep residual network was to obtain a model by 
supervised training for prediction and extract DLG features.  
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Figure 1. The framework of this study. 

B. Materials 

Data used in the preparation of this study were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (http://www.loni.ucla.edu/ADNI). In this 
study, 988 (AD = 622, healthy controls =366) individuals 
from the ADNI cohort were included. Meanwhile, the 
following data from 988 ADNI participants were downloaded 
from ADNI, including the Illumina SNP genotyping data, 
demographic information and diagnosis information. Clinical 
characteristics including age, sex, education and Mini-Mental 
State Examination (MMSE) were listed in Table 1.  

TABLE I.  DEMOGRAPHIC AND CLINICAL CHARACTERISTICS 

 HC (n = 366) AD (n = 622) 

Female/Male 189/177 261/361 

Age 73.96±5.67 74.55±7.33 

Education 16.38±2.67 15.53±2.90 a 

MMSE score 29.07±1.12 22.31±4.03a 

Note: Age, Education, MMSE are given as mean ± standard deviation. 

a Two sample t-test, p < 0.05, HC and AD. 

C. DNA isolation and SNP genotyping 

SNP genotyping for more than 620000 target SNPs was 
completed on all ADNI participants using the following 
protocol. First, a total of 7 mL of blood was taken in 
EDTA-containing Vacutainer tubes from all participants and 
genomic DNA was extracted using the QIAamp DNA Blood 
Maxi Kit following the manufacturer’s protocol. Second, 
lymphoblastoid cell lines were established by transforming B 
lymphocytes with Epstein-Barr virus. 14 Genomic DNA 
samples were analyzed using the Human 610-Quad BeadChip 
according to the manufacturer’s protocols. Before initiation 
of the assay, 50 ng of genomic DNA from each sample was 
examined qualitatively on a 1% Tris-acetate-EDTA agarose 
gel to check for degradation. Degraded DNA samples were 
excluded from further analysis. Third, samples were 
quantitated in triplicate with PicoGreen® reagent and diluted 
to 50 ng/L in TrisEDTA buffer (10 mM Tris, 1 mM EDTA, pH 
8.0). A total of 200 ng of DNA was then denatured, 
neutralized, and amplified for 22 hours at 37°C (this is termed 
the MSA1 plate). The MSA1 plate was fragmented with FMS 
reagent (Illumina) at 37°C for 1 hour, precipitated with 
2-propanol, and incubated at 4°C for 30 minutes. Fourth, the 
resulting blue precipitate was re-suspended in RA1 reagent 
(Illumina) at 48°C for 1 hour. Samples were then denatured 
(95°C for 20 minutes) and immediately hybridized onto the 

BeadChips at 48°C for 20 hours. The BeadChips were 
washed and subjected to single base extension and staining. 
Finally, the BeadChips were coated with XC4 reagent 
(Illumina), desiccated, and imaged on the BeadArray Reader 
(Illumina). The Illumina BeadStudio 3.2 software was used to 
generate SNP genotypes from bead intensity data [7]. 

D. Quality control and APOE genotype 

 The following quality control (QC) steps were performed 
on these 998 samples using the PLINK software package 
(http://pngu.mgh.harvard.edu/~purcell/plink/), release v1.07. 
SNPs and participants were excluded from the  analysis if 
they could not meet any of the following criteria [8]: Call rate 
per SNP ≥90%;  Call rate per participant ≥90%; Gender 
check; Minor allele frequency (MAF) ≥5%; Hardy–Weinberg 
equilibrium test of p≤10−6; PI_HAT<0.5. After the QC 
procedure, 301388 features for each subject were considered 
for further analysis. The overall genotyping rate for the 
remaining dataset was over 99.5%. 

Although the APOE gene was an important target gene in 
AD research, it was not available for all identified APOE 
SNPs on the Illumina array. Therefore, the genotypes of the 
APOE SNPs that were not available were added to ADNI 
genotype data based on the reported the APOE ε2/ε3/ε4 status 
before the assessment of sample quality. 

E. SNP genotype coding 

A single nucleotide polymorphism is a DNA sequence 
variation occurring when a single nucleotide (A, T, C, or G) in 
the genome differs among members of a biological species or 
across paired chromosomes. Based on the ADNI GWAS SNP 
data, in this study, we encoded SNPs using the coding scheme 
as follows: A refers to 1, T refers to 2, C refers to 3, and G 
refers to 4. 

F. GWAS analysis 

GWAS has been emerged as a popular tool to identify 
genetic variants that are associated with disease risk. Standard 
analysis of a case-control GWAS involves assessing the 
association between each individual genotyped SNP and 
disease risk. A Manhattan plot and a quantile–quantile (Q–Q) 
plot were used to visualize GWAS results. All association 
results surviving the significance threshold of 𝑝 < 1.66e − 7 
were saved and prepared for additional pattern analysis. 

G. DLG model 

The based DLG model acted as a feature encoder, which 
had a significant impact on classification. In this study, we 
applied Resnet34 model to the classification between AD and 
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HC groups. The greatest advantage of Resnet framework lies 
in adding identity mapping that is performed by the shortcut 
connections and their outputs are added to the outputs of the 
stacked layers. Therefore, the Resnet addressed the 
degradation problem and added neither extra parameter nor 
computational complexity. The formula of residual learning 
was designed as: denoting the desired underlying mapping 
as 𝐻(𝑥) , we let the stacked nonlinear layers fit another 
mapping of 𝐹(𝑥) = 𝐻(𝑥) − 𝑥 . The original mapping was 
recast into𝐹(𝑥) + 𝑥 . The formulation of 𝐹(𝑥) + 𝑥  can be 
realized by feedforward neural networks with “shortcut 
connections” [9]. Fig. 2 showed the building block of the 
residual learning model.  

There were two steps included in the entire process, the 
forward computation and the backward propagation. Before 
that, each subject’s SNP genotype data were cropped after 
quality control, generated to 776 ×776 pixels. In the training 
stage, SNP genotype data were fed into the network to update 
model parameters by backward propagation. The outputs of 
the network were used as the classification results, and the 
cross-entropy of the outputs were calculated as the loss 
function. We set learning rate to 1e-3 and applied the Adam 
optimizer to update the model parameters with batch size 10. 
The maximum iteration step was set to 20. 

For investigating the interpretability of the DLG model, the 
last convolutional layer of the last res-block was made 
transparent to extract DLG features by applying the 
Gradient-weighted Class Activation Mapping (Grad-CAM). 

 

 
 
Figure 2. Residual learning: a building block. 

H. Classification 

The enrolled subjects were randomly divided into one 
training group and one independent test group with the ratio 
of 9:1. The training group was then used to optimize the 
model parameters. We also randomly chose 25% of training 
group to form a validation group to guide the choice of hyper 
parameters.  

To verify the diagnostic capabilities of the DLG model 
compared with traditional GWAS analysis, we performed 
comparative trials. Among all the gene indicators, theta value 
was proved to have the most direct relationship with SNP 
changes. APOE ε4 status and the normalized theta-value of 
the significant SNP loci found in this study were seen as 
predictors to classify genetically and we used Support Vector 
Machine (SVM) with the linear kernel 500 times for 
classification.  

To evaluate classification performance, we repeatedly 
conducted 5-fold cross-validation in the training group and 
verified in the test group. Accuracy, sensitivity, and 
specificity of the test group were used to evaluate the results. 

I. Statistical analysis 

Demographic characteristics were compared based on 
two-sample t test or the chi-square test. Two-sample t test 
among features extracted was applied as a criterion to 
estimate the differences of DLG features between AD 
patients and HCs. All statistical analyses were performed in 
SPSS Version 22.0 software (SPSS Inc., Chicago, IL). All 𝑝 
value < 0.05 was considered significant. 

III. RESULTS 

A. Outcomes of GWAS analysis 

After GWAS analysis, we observed two genome-wide 
significant loci on chromosome 19, including rs429358 
(APOE, the epsilon 4 marker) and rs2075650 (TOMM40).  
Fig. 3 showed the Manhattan and Q–Q plots of the GWAS 
analysis. 

B. Classification performance  

Table 2 showed the classification accuracy, sensitivity, 
specificity and area under curve (AUC) of the GWAS analysis 
and the DLG model. In the test group, the GWAS analysis 
could achieve accuracy, sensitivity, specificity and AUC of 
71.38%±0.63%, 63.13%±2.87%, 85.59%±6.66% and 0.744. 
The DLG model achieved the accuracy, sensitivity, 
specificity and AUC of 92.65%±4.80%, 85.00%±16.25%, 
97.10%±4.38% and 0.999. As a result, the DLG model was 
more superior to the traditional GWAS analysis for 
classification.  

 

 
Figure 3. Manhattan and Q–Q plots of genome-wide association study (GWAS). The horizontal lines in the Manhattan plot display the cutoffs for two significant 
levels: blue line for 𝑝 < 10−5, and red line for 𝑝 < 1.66e − 7. Genomic inflation factor is 1.084.
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TABLE II.  PERFORMANCE OF DIFFERENCE CLASSIFICATION 

APPROACHES  

 Accuracy (%) Sensitivity (%) Specificity (%) AUC 

GWAS analysis 71.38±0.63 63.13±2.87 85.59±6.66 0.744 

DLG model 92.65±4.80 85.00±16.25 97.10±4.38 0.999 

Note: The methods are conducted with cross-validation and their results are given as mean ±standard 

deviation.    

C. Interpretability of the DLG model 

The interpretability of DLG model was explored based on 
the Grad-CAM and two-sample t test. Setting the threshold 
for 𝑝  value <0.05, feature information of more over ten 
thousand SNP loci showed differences between AD and HC 
groups. Table 3 showed several SNP loci that were found 
through the DLG model.  

TABLE III.  RESULTS OF THE  DLG MODEL INTERPRETABILITY  

SNP CH Region or Closest Gene P value 

rs16847609 3 SOX14/CLDN18 0.039 

rs2067477 11 CHRM1;LOC105369333 0.013 

rs690705 
13 RFC3 0.045 

rs6311 
13 HTR2A 0.021 

rs6313 
13 HTR2A 0.027 

rs2073475 
15 CYP11A1 0.010 

rs2456930 15 TLN2 0.010 

Note: SNP, singlenucleotide polymorphism. CH = chromosome. 

IV. DISCUSSION 

This paper proposed a deep learning genomics approach 
based on Resnet34. The classification experiment results 
indicated the higher diagnosis value of the DLG model 
compared with traditional GWAS analysis.  

In GWAS analysis two SNPs were identified at the 𝑝 <
1.66𝑒 − 7 significance level. As a well-established AD risk 
factor, the APOE SNP rs429358 was determined as the most 
prominent genetics. Moreover, the second significant 
TOMM40 SNP rs2075650 was also found as a gene adjacent 
to APOE and an additional contributor to AD [10]. These 
results were consistent with previous studies [3,10].  

Besides, when we interpreted the DLG model, we found 
more over one thousand SNP loci with significant difference. 
Among those, the A allele of rs16847609 had been reported 
to be associated with AD in APOE ε4- carriers [11]. In 
addition, rs2456930 was revealed to influence temporal lobe 
structure with relevance to neurodegeneration in Alzheimer's 
disease [12]. The SNP loci rs690705 was also a characteristic 
of important GWAS SNPs associated with AD [13]. That was 
to say, the DLG model indeed had the ability to identify the 
difference of genomics between AD and HC groups.  

 It was worth noting that this study had some limitations. 
Firstly, only gene sequences were used as the inputs of DLG 
for classification. We planned to combine gene sequences 
with clinical data and brain imaging together to facilitate the 
classification abilities of DLG. Secondly, the materials in this 
study were limited. We only compared the classification 
results between AD and HC groups in this study. We would 
like to test our model in other datasets such as mild cognitive 
impairment in the future. Thirdly, we only deployed one kind 

of DLG models in this study. We would like to utilize 
different deep learning models and compare the classification 
results to choose the best. Lastly, the dataset used in this study 
may not be large enough. The results of this study need to be 
further verified by other datasets. 

In conclusion, this study suggested that the DLG approach 
was effective in AD research and outperformed traditional 
GWAS analysis. Moreover, the several novel SNP loci 
identified in the DLG approach including rs6311 and rs6313 
in HTR2A, and rs690705 in RFC3 will be worthy of further 
exploration to better understand the mechanisms of AD. 
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