
  

  

 
Abstract— This work addresses the automatic segmentation 

of neonatal phonocardiogram (PCG) to be used in the artificial 

intelligence-assisted diagnosis of abnormal heart sounds. The 

proposed novel algorithm has a single free parameter – the 

maximum heart rate. The algorithm is compared with the 

baseline algorithm, which was developed for adult PCG 

segmentation. When evaluated on a large clinical dataset of 

neonatal PCG with a total duration of over 7h, an F1 score of 

0.94 is achieved. The main features relevant for the segmentation 

of neonatal PCG are identified and discussed. The algorithm is 

able to increase the number of cardiac cycles by a factor of 5 

compared to manual segmentation, potentially allowing to 

improve the performance of heart abnormality detection 

algorithms. 

I. INTRODUCTION 

Classification of pathological audio signatures in a 
phonocardiogram (PCG) recording requires segmentation of 
the recording into fundamental heart sounds (FHS). FHS 
usually include the first (S1) and second (S2) heart sounds 
representing the systolic or diastolic regions. Subsequent 
feature extraction and classification of pathological audio 
signatures in these regions allows the identification of various 
heart conditions [1, 2].  

Signal processing methods based on envelopes have been 
widely used for FHS segmentation [3–5]. Wavelet 
decomposition has also been employed in [6, 7]. To further 
improve the accuracy, signal processing methods have been 
accompanied by machine learning. A deep neural network has 
been used over a set of mel-frequency cepstral coefficients in 
[8]. Neural networks have also been used together with 
features extracted from the discrete wavelet transform [9]. An 
ensemble of empirical mode decomposition and kurtosis 
features were used over a significantly larger dataset of 
thousands of cardiac cycles in [10]. The probabilistic approach 
based on the hidden semi-Markov model (HSMM) was tested 
in a dataset of more than 11,000 cardiac cycles [11]. In 2016, 
a challenge was carried out in Physionet on heart sound 
classification to address the level of robustness of developed 
methods to larger datasets, variety of PCG recordings, at times 
with poor signal quality [12].  

While various algorithms have been developed for adult 
PCG segmentation, very limited work has been done to 
automate neonatal PCG segmentation. One of the most 
distinctive characteristics of adult and neonatal PCG is heart 
rate (HR). Several studies have demonstrated that both HR and 
maximum HR decline with age. The simplest formula that 
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models the maximum HR in beats per minute (BPM) as a 
function of age is maximum_HR = 220 – age, which was 
empirically obtained from data collected in [13]. A subsequent 
study showed even more accurate formulations using both 
linear and non-linear approximations [14]. While those studies 
offer broad models across a wide age range, some studies 
focused their attention on the edge-subgroups of children and 
neonates, reporting an HR of 127 BPM (median) in healthy 
neonates [15] and a maximum HR as high as 222 BPM, but 
typically 192 BPM [16].  

The maximum HR is usually used as an upper bound on 
the expected HR to better estimate the PCG signal's periodicity 
and subsequently identify the FHS correctly. Most of the 
reviewed segmentation algorithms rely on a number of free 
parameters, and the difference of the maximum HR between 
adult and neonatal PCG is of significant importance when 
trying to port an existing adult PCG segmentation algorithm to 
the neonatal population.  

In this work, a novel algorithm for automatic segmentation 
of neonatal PCG is proposed with a single free parameter – 
maximum HR. The algorithm is compared with the baseline 
algorithm [11], which was modified to segment neonatal PCG. 
The algorithm successfully increases the number of segmented 
cardiac cycles by a factor of 5 with respect to manual 
segmentation. The algorithm has been implemented using a 
similar framework as in [2], which would facilitate subsequent 
integration into the cloud-based system. 

II. METHODS 

A. Dataset 

The dataset used in this study was collected between Sept. 
2013 and Sept. 2018 at two hospitals in Ukraine. Informed 
parental consent was obtained for every participant before 
study inclusion. The study was approved by local ethics 
committees. In total, 265 newborns were included in the study, 
with the gestational ages ranging between 35 and 42 weeks. A 
variety of diagnoses were present in the recordings, including 
PDA and various types of CHD, as confirmed by 
echocardiography.  

For each patient, PCG recordings were taken within the 
first 6 days of life from 5 auscultation areas on the chest using 
a digital stethoscope recording audio at 44.1kHz and 16bit 
resolution (Thinklabs ds32a and ThinkLabs One, Centennial, 
USA). The dataset used in this study consists of 1325 PCG 
recordings of a total length of 7h 48min, from which only 5904 
cardiac cycles are annotated by hand. These amount to 47min 
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which represents approximately 10% of the whole dataset. 
Only this part can effectively be used for modelling or 
classification purposes, as was done in [2]. Table I shows the 
database details. 

B. HSMM-based algorithm for adult PCG segmentation 

An adult PCG segmentation algorithm [11] has been used 
as a starting point in this study. The algorithm uses a set of 
features derived from homomorphic envelogram, Hilbert 
envelope, wavelet envelopes and the power spectral density of 
the input PCG signal. Those features are fed into a hidden 
semi-Markov model (HSMM) that includes a priori statistical 
information (mean and SD) about the duration to remain at 
each hidden state (i.e., FHS). 

The algorithm in [11] has been modified to make it suitable 
for faster neonatal PCG signals. In particular, the duration 
distributions of the FHS and the constraints regarding the 
maximum HR and the minimum systolic duration were re-
tuned on the neonatal dataset. 

C. Proposed algorithm 

The algorithm is divided into 2 main blocks: segmentation 
and modelling. The segmentation block performs signal 
conditioning and splits the audio into sounds (S1 or S2) and 
silences (systole or diastole), whereas the modelling block 
aims at resolving the S1/S2 ambiguity.  

The flowchart of the segmentation routine can be seen in 
Figure 1. The main stages are: 

• Low-pass filter: the PCG signal is filtered at 1kHz. 

• Dynamic-range compression: a compressor is utilized to 
reduce the dynamic range of the PCG signal amplitudes. 
For each recording, the 95-percentile on the signal's 
absolute value is used as an adaptive threshold. The signal 
is normalized with respect to its maximum amplitude after 
this process. 

• Fast envelope: the signal is convolved using a 2-sided 
exponential impulse response with an attack/decay time 
of 15ms. The 15ms are established as 20 times less than 
the maximum heart rate, 200 BPM. 

• Slow envelope: the low-pass filtered version at 3.3Hz of 
the fast envelope is used to represent the slow envelope. 
The frequency of 3.3 Hz is equivalent to the maximum 
heart rate 200 BPM. 

• Locate peaks in the slow-envelope as local extrema. The 
first approximation of the actual HR of the recording is 
performed using the locations of those peaks and Eq. 1:  

 𝐻𝑅 =  Median−1{s[k] − s[k − 2]}1<𝑘<𝑁 () 

N is the total number of segmented FHS in the recording. 
HR is estimated from the array of the start times of each 
FHS s[k] by taking the median of the differences obtained 
from one out of two consecutive start times (as an S1/S2 
alternating sequence is expected). 

• Refine the locations of the peaks using the maximum of 
the fast envelope inside a window of a half duration of a 
cycle (given by the previously estimated HR).  

• Find start and endpoints of the beats (S1 and S2) as the 
closest point where the fast envelope falls 1/8 from its 
peak-amplitude (18dB). 

• Refine start and endpoints by finding the next zero-
crossing point of the original PCG signal (backwards and 
forward, respectively). 

Once the signal is partitioned, the resultant segments need 
to be classified either as S1 or S2. The modelling routine starts 
with feature extraction. Sound and silence segments are 
parametrized using the large set features that capture energy, 
temporal and frequency information. The same feature set has 
been utilized for the classification of heart abnormalities in [2]. 
The top-2 most important features for discrimination between 
S1 and S2 are the relative time of the silence intervals (RTS) 
and the tonal deviation from the average central frequency 
(TDCF) defined in Eq. 2 and Eq. 4:  

 𝑅𝑇𝑆[𝑘] =  𝐻𝑅 · T𝑠𝑖𝑙𝑒𝑛𝑐𝑒[𝑘] () 

where k denotes each segmented silence. The tonal deviation 
measures the relative difference of the central frequency of the 
first and second heart sounds with respect to the average 
central frequency of the recording. The central frequency is 
computed as: 

 𝑓𝑐 =  
𝑓·|𝑋(𝑓)|2

∑|𝑋(𝑓)|2  () 

where f is the array of frequencies from 5Hz to 200Hz and X(f) 
the discrete Fourier transform of the segmented sound (S1 or 
S2). After the central frequency is obtained, the tonal deviation 
for each segmented sound, k, in the recording is obtained as: 

 
Figure 1. The flowchart of the segmentation algorithm. 

TABLE I. DESCRIPTION OF THE NEONATAL PCG DATASET 

Total number recordings 1325 

Recordings per patient 5 

Total number of annotated cycles 5904 

Annotated cycles per recording Median 5, IQR 4-5 

Annotated cycles per patient Median 23, IQR 21-25 

Total hours recorded: 7h 48min 

Total annotated 47min 53s 
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 𝑇𝐷𝐶𝐹[𝑘] = log2
𝑓𝑐[𝑘]

𝑚𝑒𝑎𝑛(𝑓𝑐[𝑘])0≤𝑘≤𝑁−1
 () 

The logarithm base 2 is used to obtain the relative 
difference in octaves – a tonal deviation of 1 octave implies 
that the central frequency is twice the average central 
frequency. 

A gradient boosting decision tree (XGBoost) classification 
algorithm is trained and tested using subject-independent 10-
fold cross-validation (CV), as described in [2]. The models 
were constructed using the following settings: objective = 
binary: logistic, eval_metric = auc, eta = 0.03 (learning rate). 
Other hyperparameters such as the number of branch levels for 
each decision tree (max_depth), a ratio of randomly selected 
data rows or samples (subsample), a ratio of randomly selected 
data columns or features (colsample_bytree), and the number 
of decision trees used by the model (tree_num) are tuned using 
the nested CV routine. 

III. RESULTS 

Table II compares the developed algorithm performance 
for neonatal PCG segmentation with that of the HSMM-based 
algorithm [11]. The performance of the latter is obtained with 
and without parameter tuning on neonatal PCG. The proposed 
algorithm achieves the best score for all considered metrics.  

Table III outlines the number and the values of tunable 
hyperparameters of the compared algorithms both for neonatal 
and adult PCG. It can be seen that, while the HSMM algorithm 

hyperparameters are estimated from the dataset itself, the 
proposed algorithm has only a single free parameter and this 
can be obtained as function of the patient’s age, which is well 
reported in the related literature [13–16].  

Figure 2 shows the scatter plot of Systole and Diastole 
classes for the top-2 features against the HR, RTS and TDCF. 
Diastolic RTS tend to be larger than systolic RTS at low HR. 
On the range between 130-160 BPM, both systolic and 
diastolic RTS converge to a similar relative duration, 
increasing overlap between the two classes. The TDCF 
difference between S1 and S2 is half of an octave, on average, 
with no dependence on HR. 

Figure 3 illustrates an example of 5 cycles of neonatal PCG 
segmented by hand, the proposed algorithm and the two 
variants of the HSMM algorithms. 

IV. DISCUSSION 

Automated segmentation of neonatal PCG to its FHS can 
improve the accuracy of the heart abnormality detection 
models through the generation of more training data. The 
usage of this algorithm can potentially expand the current 
dataset from 47min 53s minutes to 262 min 33s which 
represents an increase in the number of cardiac cycle instances 
by a factor of 5. Data-hungry deep learning approaches can be 
considered for the classification of neonatal heart sounds [17]. 
More importantly, automated methods to segment neonatal 
PCG can also remove the burden on the need for a healthcare 
professional to segment each cycle, which is a key step for the 
AI-based decision support systems. It has been shown in [2] 
that approximately half of the data used in this study contained 
noises external to the heart sounds, making the task of 
segmentation very challenging, both for the ML and the 
healthcare professional. Those external noises included mainly 
baby crying, people speaking, or movement artefacts (e.g. skin 
scratching).  

It can be seen from Figure 3, the HSMM-based algorithm, 
HSMM (orig), tuned on adult PCG and tested on neonatal PCG 
estimates a wrong HR as half of the actual HR. As a result, it 
often fails to detect the S2 segment correctly and only detects 
one out of the two S1 in the shown example. The algorithm 
has considerably lower F1 scores, especially when it comes to 
identifying the second heart sound (S2).  

When HSMM-based algorithms parameters are properly 
adjusted, HSMM (mod), a boost in performance can be 
observed from Table II. Figure 3 also shows a reasonably 
accurate segmentation obtained with HSMM.  

 
Figure 2. Two most important features for Systole-Diastole classification as 
a function of HR: RTS (top), TDCF (bottom). Best seen in color. 

TABLE II. THE COMPARISON OF ALGORITHMS FOR NEONATAL PCG 

SEGMENTATION 

Algorithm Se P+ Acc F1 F1(S1) F1(S2) 

HSMM (orig) 0.61 0.75 0.60 0.65 0.77 0.53 

HSMM (mod) 0.91 0.93 0.90 0.91 0.93 0.89 

This work 0.93 0.95 0.92 0.94 0.94 0.93 

The reported metrics to assess the accuracy of adult PCG segmentation are: 

recall, also known as sensitivity (Se), precision, also known as positive 
predictive value (P+), accuracy (Acc) and F1 score over precision and recall 

(F1). The latter is also reported separately for the first and second heart 

sounds as F1 (S1) and F1 (S2), respectively. 

TABLE III. HYPERPARAMETERS AND THEIR VALUES USED FOR ALGORITHM 

PERFORMANCE ASSESSMENT. 

HSMM [11] 

Hyperparameter Adult PCG Neonatal PCG 

S1 duration (mean) 122ms 78ms 

S1 duration (SD) 22ms 20ms 

S2 duration (mean) 92ms 51ms 

S2 duration (SD) 22ms 15ms 

Min. systolic duration 200ms 100ms 

Maximum HR 120 BPM 200 BPM 

This work 

Hyperparameter Adult PCG Neonatal PCG 

Maximum HR 120 BPM 200 BPM 
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However, the HSMM-based algorithm required several 
hyperparameters to be adjusted to fit the neonatal PCG 
characteristics. First, a priori knowledge of the durations of S1 
and S2, which are not HR dependent, are required. The 
algorithm uses this information to estimate the time to remain 
in each state (S1, systole, S2, diastole). The durations obtained 
from the adult dataset [11, 18] were 122ms for S1 and 92ms 
for S2, both within a standard deviation of 22ms. When it 
comes to neonatal heart sounds, those durations are 
significantly smaller, and the average values are estimated to 
be 78ms for S1 and 51ms for S2, with 20ms and 15ms standard 
deviations, respectively. Moreover, the minimum systolic 
duration was assumed to be 200ms for adult PCG in the 
original algorithm. This had to be reduced to 100ms in the 
modified version of the HSMM-based algorithm.  

In contrast, the proposed algorithm requires no prior 
knowledge of the S1 and S2 durations. The algorithm only 
requires the maximum HR specified. Figure 3 shows that the 
developed algorithm better captures the onset and offset of S1 
and S2 segments, which is reflected in the highest F1 scores 
both for S1 and S2, in Table II.  

The developed algorithm was also tested on the dataset of 
adult PCG by setting the maximum HR to 120 BPM. An F1 
score of 0.91 was achieved as compared to an F1 score of 0.96, 
which was reported with the HSMM-based solution. With a 
single tunable hyperparameter, the algorithm works 
comparably well in a variety of scenarios.  

The systolic duration is known to be shorter than the 
diastolic duration in most cases. Some heart sound 
segmentation methods are entirely based on that assumption 
[6, 9]. Several studies have shown, however, that for fast HR, 
the opposite can occur [19, 20]. Our findings are consistent 
with these reports, as can be seen in Figure 2 for RTS. For HR 
between 130-160 BPM, the systolic time can be of at least the 
same duration as the diastolic time. The proposed method 
incorporates additional features that are not HR-dependent, 
such as the TDCF, allowing more accurate differentiation, 

especially in the neonatal PCG, where the HR is faster when 
compared to adult PCG.  

V.  CONCLUSIONS 

This paper presents a novel approach to segment neonatal 
PCG. The method compares favourably with existing 
algorithms in terms of the performance and the number of 
parameters to tune. The segmented PCG can increase the 
amount of annotated cardiac cycles 5-fold to improve heart 
abnormality detection algorithms' accuracy. The developed 
method represents a promising step towards fully-automated 
AI-based decision support for PCG-based detection of 
neonatal heart abnormalities.  
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Figure 3. An example of segmentation applied on a 5-cycle PCG recording. 

Blue and red areas indicate the ground truth for the segmentation of S1 and 

S2 sounds, respectively. From top to bottom, the graph shows the following 

traces: PCG waveform (a); the sequence of states obtained with the original 
(b) and adapted HSMM-based algorithms (c); the sequence of states obtained 

with the proposed algorithm (d). Best seen in color. 
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