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Abstract— Stimulus-driven brain-computer interfaces
(BCIs), such as the P300 speller, rely on using sensory
stimuli to elicit specific neural signal components called
event-related potentials (ERPs) to control external devices.
However, psychophysical factors, such as refractory effects and
adjacency distractions, may negatively impact ERP elicitation
and BCI performance. Although conventional BCI stimulus
presentation paradigms usually design stimulus presentation
schedules in a pseudo-random manner, recent studies have
shown that controlling the stimulus selection process can
enhance ERP elicitation. In prior work, we developed an
algorithm to adaptively select BCI stimuli using an objective
criterion that maximizes the amount of information about the
user’s intent that can be elicited with the presented stimuli
given current data conditions. Here, we enhance this adaptive
BCI stimulus selection algorithm to mitigate adjacency
distractions and refractory effects by modeling temporal
dependencies of ERP elicitation in the objective function and
imposing spatial restrictions in the stimulus search space.
Results from simulations using synthetic data and human data
from a BCI study show that the enhanced adaptive stimulus
selection algorithm can improve spelling speeds relative to
conventional BCI stimulus presentation paradigms.

Clinical relevance—Increased communication rates with our
enhanced adaptive stimulus selection algorithm can potentially
facilitate the translation of BCIs as viable communication alter-
natives for individuals with severe neuromuscular limitations.

I. INTRODUCTION

Brain-computer interfaces (BCIs) have broad applications
for restoring or replacing neural output that has been lost
due to injury or disease, including nerve stimulation, limb
prosthetic control, and communication. BCIs measure and
analyze brain signals to convert a user’s intent into com-
mands to control external devices [1].

The P300 speller is a widely researched BCI for indi-
viduals with severe neuromuscular diseases, such as indi-
viduals with late-stage amyotrophic lateral sclerosis (ALS)
[2]. Noninvasive P300 spellers rely on eliciting and detecting
ERPs embedded in electroencephalography (EEG) data via
sensory stimuli. Infrequent target stimuli are presented within
a sequence of nontarget stimuli; the presentation of the target
stimulus elicits an ERP. Users of the visual P300 speller
focus on a target character within a grid layout while visual
stimuli are presented as sequentially highlighted groups of
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characters, termed flash groups. For example, in the row-
column (RC) stimulus presentation paradigm, groups of rows
or columns of characters are randomly presented [2]. Fig.
1 shows a visual P300 speller interface with a highlighted
row flash group. After each stimulus presentation, EEG data
from a time window immediately after stimulus onset are
processed. A decoding algorithm determines the user’s target
character by using a classifier to identify ERPs embedded
in EEG data and selecting the character whose presentation
pattern most closely matches the classifier’s predictions.

Current BCI communication rates are relatively slow and
impractical for everyday use due to their reliance on inher-
ently noisy and nonstationary EEG data. Factors that may
lower the signal-to-noise ratios (SNRs) of ERPs include
fatigue and psychophysical effects arising from properties
of the presented stimuli, such as refractory and adjacency
distraction effects [3]. Refractory effects occur when a target
stimulus is presented more than once in a short time frame,
impacting the amplitude and latency of ERPs elicited with
the subsequent target stimuli. Adjacency distractions occur
when characters in the spatial vicinity of the target character,
particularly neighboring characters, are presented.

The RC paradigm, which is the most widely used stimulus
presentation paradigm in the BCI literature, is highly suscep-
tible to refractory effects due to the possibility of short time
intervals between target stimuli and to adjacency distractions
inherent to presenting characters in row/column flash groups
[4]. The checkerboard (CB) paradigm was developed to
mitigate refractory effects and adjacency errors: a checker-
board overlay is used on the speller grid to design flash
groups with nonadjacent characters and impose a minimum
time interval between character presentations [4]. However,
stimulus presentation schedules in these conventional BCI
stimulus paradigms are generated pseudo-randomly, with
limited considerations of how to choose the presented stimuli
to enhance ERP elicitation and maximize BCI performance.

Recently, we developed a novel algorithm to adapt the BCI
stimulus presentation schedule in real-time with an objective
criterion that maximizes the amount of information about

Fig. 1. Example P300 speller interface with a 6 × 6 spelling grid. The
highlighted ‘flash group’ is a row of characters.
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the user’s intent that can be obtained with the presented
stimuli given the current data [5]. However, preliminary
results from an online BCI study showed that performance
improvements with the adaptive stimulus selection paradigm
were not consistent across users because spatial constraints
were not imposed to minimize adjacency distractions during
stimulus selection. Furthermore, the objective function used
for stimulus selection did not incorporate the temporal de-
pendency of EEG responses arising from refractory effects.

Here, we enhance our adaptive stimulus selection al-
gorithm to mitigate refractory effects and adjacency dis-
tractions via modifications to the objective function and
stimulus search space, respectively. We present results from
simulations comparing BCI performance with our enhanced
adaptive stimulus selection algorithm and with conventional
stimulus presentation paradigms.

II. METHODS

Signal analysis and simulations were performed in MAT-
LAB© (Mathworks, Inc.; Natick, MA, USA). Statistical
analysis was performed in R.

A. Bayesian Dynamic Stopping

The P300 speller estimates the character a user intends
to spell by using a classifier to distinguish between EEG
responses to target and nontarget stimuli. After each stimulus
presentation, a time window of the user’s EEG data is used
to extract a feature vector, to which a classifier is applied
to generate a score. The classifier score is used to update
a character scoring function that evaluates the probability of
each potential BCI character being the user’s target character,
given the current data. After a certain amount of data is
collected, the character that maximizes the scoring function
is spelled. In this work, we use a Bayesian dynamic stopping
(DS) algorithm [6] as a character scoring function, and
maintain a probability distribution over the possible character
choices. After each stimulus presentation, the naı̈ve Bayesian
algorithm updates character probabilities accordingly:

P (ci = C∗|St,xt−1, xt) =

P (ci = C∗|St−1,xt−1)p(xt|ci = C∗, St)∑
m P (cm = C∗|St−1,xt−1)p(xt|cm = C∗, St)

, (1)

p(xt|ci = C∗, St) =

{
l1(xt), ci ∈ St

l0(xt), ci 6∈ St

, (2)

where t is the time index; P (ci = C∗|St−1,xt−1) := Pt,i

is the prior probability of the ith character being the target
character C∗ given current flash group, St, and past classifier
scores, xt−1 = [x1, x2, ..., xt−1]; P (ci = C∗|St,xt−1, xt) is
the posterior probability; p(xt|ci = C∗, St) is the likelihood
of generating the current classifier score xt, conditioned on ci
being the target character and appearing in the flash group St;
and l0 and l1 are class-conditional classifier score probability
density functions (pdfs) for nontarget and target responses,
respectively. A dynamic stopping criterion terminates data
collection when a character reaches the probability threshold

(pth) or when a data collection limit is reached. Therefore,
the amount of data collection prior to character selection
varies based on the BCI’s level of confidence in estimating
the target character.

With a naı̈ve assumption (1), the data likelihood function
in (2) does not model the temporal dependency of target
classifier scores. We therefore consider a nonnaı̈ve Bayesian
algorithm where the target classifier scores are dependent on
the interval between character presentations. Let [...TNNT...]
represent a target character’s presentation pattern with a
character-to-character interval (CCI) of 3, where N denotes
a nontarget stimulus; T denotes a target stimulus; and T
denotes the target stimulus under consideration. Extending
(2), the data likelihoods in a nonnaı̈ve Bayesian algorithm
are assigned based on the character’s CCI accordingly:

p(xt|ci = C∗, St) =

{
l1(xt, CCIi,t), ci ∈ St

l0(xt), ci 6∈ St

, (3)

where CCIi,t is the CCI of character ci present in flash
group St, assuming that ci is the target character at time
index t, and l1(xt, CCIi,t) is a CCI-specific pdf.

CCIs can take any positive integer value. To reduce
model complexity, we grouped CCIs to estimate binned
CCI-specific pdfs for target classifier scores. Fig. 2a shows
estimated CCI-naı̈ve pdfs obtained from a BCI user, and Fig.
2b shows CCI-specific target pdfs from the same user. In Fig.
2b, the pdf of the bin with the lowest CCIs is closest to the
nontarget pdf, reflecting refractory effects. These effects may
be mitigated if CCI-specific pdfs assign a higher likelihood
of generating low scores to target stimuli with low CCIs, e.g.,
for a classifier score x = 0 and CCI = 1, the associated
likelihood for the nonnaı̈ve case, l1(x = 0, CCI = 1) (Fig.
2b) is greater than for the naı̈ve case, l1(x = 0) (Fig. 2a).

B. Adaptive Stimulus Selection

Objective Function: After each stimulus presentation, the
BCI extracts information about the target character from
the user’s EEG response to the presented stimulus, which
is condensed into a classifier score. In our prior work, we
developed an algorithm to optimize BCI stimulus selection
by maximizing the amount of information about the target
character that can be obtained from a future flash group given
the current data [5]. Mutual information (MI) is a measure
in information theory that quantifies the average reduction in
uncertainty about one random variable that can be obtained
by knowledge of a second random variable [8]. A future flash
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Fig. 2. Probability density functions (pdfs) of nontarget (l0) and target (l1)
classifier scores estimated from training data from a BCI user [7], assuming
the Bayesian algorithm is: (a) character-to-character interval (CCI)-naı̈ve;
and (b) CCI-nonnaı̈ve, i.e., separates target classifier scores by CCI.
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group is adaptively selected by optimizing a MI function [5]:

S∗t+1 = argSh
t+1

max I(Xh
t+1;C∗|xt,S

h
t+1), (4)

where I(Xh
t+1;C∗|xt,S

h
t+1) is the MI between the target

character C∗ and the classifier score Xh
t+1 generated by a

hypothetical future flash group, Sh
t+1, conditioned on the

future sequence of flash groups, Sh
t+1 = [S1, ..., St, S

h
t+1]

and the current sequence of classifier scores, xt; and S∗t+1

is the flash group that maximizes the MI function.
Given class-conditional pdfs estimated from a user’s train-

ing data, the MI function with the naı̈ve Bayesian algorithm
can be parameterized solely by the prior probabilities of
characters in a future flash group [5]. Fig. 3a shows the MI
functions associated with the pdfs from Fig. 2a: the stimulus
selection process favors flash groups with characters whose
sum of prior probabilities are close to 0.5.

To generalize for the nonnaı̈ve case using (3), we define
an enhanced MI function that is parameterized by the prior
probabilities of characters in a future flash group, which are
grouped by CCI accordingly:

I(Xh
t+1;C∗|xt,Sh

t+1) =

∫ ∞
−∞

ΣN
n=1P1t,nl1(xht+1, n)

× log(
l1(xh

t+1,n

l0(xh
t+1)(1−

∑N
n=1 P1t,n)+

∑N
n=1 P1t,nl1(xh

t+1,n)
)

+ (1− ΣN
n=1P1t,n)l0(xht+1)

× log(
l0(xh

t+1)

l0(xh
t+1)(1−

∑N
n=1 P1t,n)+

∑N
n=1 P1t,nl1(xh

t+1,n)
)dxht+1,

(5)

P1t,n := P1t,n(Sh
t+1) = Σ∀i:ci∈Sh

t+1∩CCIi,t=nPt,i, (6)

where N is the number of binned CCI-specific pdfs; and
P1t,n(Sh

t+1) is the sum of probabilities at time index t for
characters in the flash group Sh

t+1 with a CCI of n.
By accounting for CCIs in (6), the stimulus selection pro-

cess is inherently biased towards flash groups with characters
whose CCI values are likely to elicit ERPs with high SNRs.
Fig. 3b shows the MI function of the pdfs in Fig. 2b. In this
case, stimulus selection favors flash groups with characters
that have a sum of prior probabilities close to 0.5, particularly
those with higher CCIs falling in the second and third bins.

Fig. 3. Mutual information (MI) functions for a BCI user [7] with the
class-conditional probability density functions in Fig. 2. (a) Target classifier
scores are grouped; P1t denotes the sum of prior probabilities of characters
in a hypothetical future flash group. (b) Target classifier scores are binned
by character-to-character interval (CCI); P1t,n denotes the sum of prior
probabilities of characters in a hypothetical future flash group for CCI bin
n. The sums that maximize MI in each case are denoted by an asterisk (*).

Adaptive stimulus selection paradigms with flash groups
selected using (4) were implemented for the P300 speller by
defining the stimulus search space accordingly.

1) Adaptive Row-Column: The search space is restricted
to row or column flash groups. Character selection occurs
in two stages: the selection of the row flash group, followed
by the selection of the column flash group, or vice versa.
The stopping probability during each selection stage is set
to p∗th =

√
pth, where pth is the stopping probability.

2) Adaptive Diffuse: A greedy approach with spatial con-
straints is used to select flash groups with up to M characters.
8-adjacent characters to existing flash group members are
excluded from the search space.

C. P300 Speller Simulations

P300 speller simulations were performed with classifier
scores generated synthetically or from bootstrapped data
from a previous study [7] using the framework developed
in [9], which has been validated with data from online
BCI studies. For each simulation, 10,000 runs of character
selections were performed. In each run, the target character
was uniformly sampled from a 6 × 6 grid and flash groups
were selected based on the specified stimulus paradigm. The
maximum flash group size in the adaptive diffuse paradigm
was 6 characters. The Bayesian DS algorithm was used for
character selection, with character probabilities initialized
uniformly and a stopping threshold, pth = 0.9. Data col-
lection was limited to 72 stimulus presentations. Statistical
significance was tested using the paired, two-sided Wilcoxon
signed-rank test (p < 0.05).

For simulations with synthetic data, classifier scores were
assumed to be normally distributed with parameters d =
µ1 − µ0

σ
, where d is the detectability index (DI), which

quantifies the between-class discriminability of the scores;
µ0 and µ1 are the means of the target and nontarget pdfs;
and σ is the assumed common standard deviation. To reflect
varying performance levels, a range of DI values was used.

To obtain more realistic performance estimates, we con-
ducted simulations with data from a prior P300 speller
study [7] that recruited 8 subjects with ALS. EEG data
were recorded from 8 centro-parietal electrode channels [10].
The stimulus duration was 187.5 ms and the inter-stimulus
interval was 62.5 ms. Each subject spelled 60 characters
using the RC paradigm on a 6 × 6 grid, corresponding to
5040 observations, split evenly into training and testing data.
Features were extracted as in [11] from the training data
and used to train a stepwise linear discriminant analysis
(SWLDA) classifier. The classifier’s scores for the training
data were used to generate kernel density estimates of
target and nontarget pdfs [6]. During simulations, the trained
classifier’s scores for the testing data were bootstrapped.

Constraints were imposed in simulations to reflect real-
world physiological and system conditions. During P300
speller use, EEG data processing causes a delay between
stimulus presentation and classifier score generation. Thus,
an observation delay, δ, was imposed; data from time step
t − δ were used to select the flash group at time step t. In
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Fig. 4. Results from simulations with synthetic data. (a) Spelling accuracy
and (b) expected stopping times of conventional and adaptive stimulus pre-
sentation paradigms assuming a naı̈ve Bayesian algorithm. Performance is
presented as a function of the area under the receiver operating characteristic
curve (AUC). Minimum CCIs were imposed for the adaptive paradigms.

simulations with BCI data, refractory effects were modelled
by sampling target classifier scores binned by CCI (Fig. 2b).

III. RESULTS

In our P300 speller simulations, we evaluated overall
spelling accuracy and speed (expected stopping time, in
stimulus presentations/character). Fig. 4 shows results from
simulations with synthetic classifier scores, presented as a
function of the area under the receiver operating characteris-
tic curve (AUC). Overall, the use of naı̈ve adaptive paradigms
improved spelling accuracy and speed relative to conven-
tional RC and CB. Of the adaptive paradigms, the adaptive
diffuse (AD) paradigm achieved the best performance, likely
due to its larger stimulus search space.

Fig. 5 shows simulation results for the RC and AD
paradigms with bootstrapped data from a BCI study [7],
sorted by the classifier AUCs associated with each subject’s
testing data. Statistical measures and analyses are summa-
rized in Table I. To assess the ability of the enhanced
MI function to mitigate refractory effects at low CCIs, the
AD paradigm was simulated with no imposed minimum
CCIs. Compared to RC, a notable decrease in accuracy was
observed with the naı̈ve AD paradigm in 4 subjects; however,
the decrease in accuracy was not significant (p = 0.055).
Further analysis revealed that the naı̈ve AD paradigm favors
the inclusion of potential target characters, even at low CCIs,
in flash groups. Thus, a decrease in spelling accuracy may
arise from nontarget classifier scores being less discriminable
from target scores at low CCIs than from target scores at
high CCIs (e.g., Fig. 2b). Refractory effects appeared to be
mitigated by the nonnaı̈ve AD paradigm, which yielded com-
parable or improved spelling accuracy at significantly faster
speeds (p < .01) relative to RC. During flash group selection,
our nonnaı̈ve algorithm incorporates character probabilities
and presentation history to maximize MI. Consequently,
characters with high CCIs are often favored (Fig. 3b), and
performance improved overall, relative to naı̈ve AD and RC.

These results show that adaptive stimulus selection can po-
tentially improve BCI performance even under temporal and
spatial constraints. During stimulus selection, psychophysical
effects, i.e., refractory effects and adjacency distractions, can
be mitigated by using a CCI-nonnaı̈ve algorithm and by
selecting flash groups without adjacent characters, respec-
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Fig. 5. Results from simulations with bootstrapped data obtained from 8
BCI users with ALS recruited by a prior study [7]. (a) Spelling accuracy
and (b) expected stopping times for row-column and adaptive diffuse
(AD) paradigms using naı̈ve and nonnaı̈ve Bayesian algorithms. Subject
performance is represented by AUCs of classifier scores for their testing
data. Minimum CCIs were not imposed for the AD paradigms.

TABLE I
SUMMARY OF RESULTS FROM SIMULATIONS WITH BCI USER DATA

Paradigm Accuracy Expected Stopping
Time

RC 0.86±0.09 43.71±14.43
AD (naı̈ve) 0.73±0.18 (p=0.055) 40.72±13.20 (p=0.313)
AD (nonnaı̈ve) 0.88±0.07 (p=0.742) 32.03±11.76 (p <.01)

The mean (µ) and standard deviation (σ2) of each performance measure
are reported as µ ± σ2. For the adaptive diffuse (AD) paradigm, p-
values are reported from comparisons with the row-column (RC) paradigm.
Statistically significant performance improvements are bolded.

tively. Future work will involve testing the enhanced adaptive
stimulus selection algorithm in online experiments.
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