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Abstract— Conventional electrocardiograms (ECG) are
displayed in one dimension. Reading one-dimensional ECG
waveform becomes challenging when one wants to visualize the
heart rate variability with naked eye. Some ECG visualization
techniques have been proposed. However, they rely on domain
knowledge to comprehend the heart rate variability. To improve
the readability for patients and non-experts, we introduce
Star-ECG, a novel ECG visualization approach. Such approach
projects ECG waveforms onto a two-dimensional plane in
a circular form. We demonstrate that Star-ECG offers not
only easily deciphered visualization of cardiac abnormalities
and heart rate variability, but also the application of state-of-
the-art arrhythmia classification with integrated deep neural
networks. We also report positive user feedback from both
experts and non-experts that Star-ECG can provide readable
and helpful information to monitor cardiac activities.

Clinical relevance — A powerful and easy-to-read ECG
visualization tool can critically improve healthcare environment
and raise awareness of abnormal cardiovascular functioning.

I. INTRODUCTION

Cardiovascular diseases are the leading cause of global
death due to its high prevalence and associated high mortality
[1], [2]. Given its severity, real time monitoring and early
diagnosis of abnormal cardiac activities are critical in clinical
practice. In this end, electrocardiogram (ECG) has become a
popular arrhythmia diagnostic tool, as ECG is non-invasive
and easily accessible. ECG is a recording of the electrical
activity of the heart [3]. Each cardiac cycle is identified by
the periodic characteristic points. It is widely known that
variations of the ECG signal are associated with changes
in cardiac dynamics. Most of the time, ECG is examined
through simple visual inspection of the one-dimensional (1D)
temporal ECG waveform [4].

However, abundant information remains hidden to human
observation in 1D ECG, especially to people without the
domain knowledge. To effectively improve the healthcare
environment, easy-to-read ECG is highly required. It is
reasonable that arrhythmia patients are eager to learn how
to read their abnormal heart rhythms. More importantly,
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once the patients can read the abnormality in their cardiac
activities, they can make effective conversations with the
cardiologists and improve health outcomes throughout the
treatment [5]. In addition to arrhythmia patients, people
around the globe can also benefit from a user-friendly
ECG reading tool to monitor their cardiovascular health. A
different ECG visualization method is desired since 1D ECG
waveform is difficult for general public to interpret.

In an effort to improve ECG rhythm readability, we
present a novel ECG visualization technique along with an
integrated convolutional neural network (CNN) arrhythmia
classifier. We proposed Star-ECG, a novel ECG visualization
tool that generates a star-like image and reflects the ECG
waveform in a circular form. Such visualization enhances the
readability of heart rate (HR) and heart rate variability (HRV)
without the requirement of heavy computation. Moreover, we
integrate deep learning into Star-ECG to classify arrhythmia,
and we demonstrate that Star-ECG achieves satisfying clas-
sification performance with experts’ approval.

II. METHODS

A. Experimental Design

To ease the reading of ECG for people without expertise,
we aim at designing an intuitive ECG visualization method.
Such method is expected to meet below the five require-
ments:

• Easy-to-read visualization: The designed visualization
should deliver ECG information in a fashion that relies
on no expertise, which enables the users to learn how
to visualize the new ECG in a short time.

• Fast heartbeat regularity identification: The visual-
ization approach should make the users feel comfortable
on determining the regularity of ECG heartbeats.

• Straightforward heart rate computation: The visual-
ization strategy should allow the users to easily compute
the HR without any additional computing resources such
as a calculator or a computer.

• Simple heart rate variability computation: The vi-
sualization technique should ease the users’ burden on
figuring out the HRV.

• Accurate arrhythmia classification: The visualization
tool should include an accurate automated arrhythmia
classification program.
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B. Star-ECG Generation

To fulfill the design requirements, we propose Star-
ECG, a visualization technique that represents ECG like a
ninja star and incorporates arrhythmia classification into the
system. We elaborate on the design of Star-ECG by first
explaining the transformation from 1D ECG to Star-ECG,
introducing the visual features of Star-ECG, then describing
the integrated arrhythmia classification function, and last
demonstrating how to read Star-ECG.

Fig. 1: Demonstration of the Star-ECG generation technique.
First, we detect R-peaks in the ECG data, which are the peaks
labeled with Arabic numbers on the top. Next, we fold each
ECG beat into two halves as illustrated. Last, we run our
Algorithm 1 to generate the Star-ECG image. We label the
sequence of heartbeats with Arabic numbers 1-12 on both
the 1D-ECG signal and Star-ECG. The sequential order on
Star-ECG is the same as the Arabic numbers on a clock.

C. Intuitive Visualization Design

To generate the intuitive Star-ECG visualization, we devise
a procedure containing three steps as illustrated in Fig. 1 to
transform traditional 1D ECG into Star-ECG.
• Step 1: Detecting ECG Heartbeats;
• Step 2: Folding ECG Heartbeats;
• Step 3: Rotating ECG Heartbeats.
The primary step is to identify all the heartbeats in 1D

ECG, and as displayed in Fig. 1, each recognized heartbeat
is labeled with an Arabic number above. To accomplish
this task, we run the famous Pan-Tompkins algorithm to
recognize the highest voltage peak in each heartbeat [6],
which is known as the R-peak in conventional ECG. The
Pan-Tompkins algorithm is one of the state-of-the-art real-
time ECG R-peaks detection techniques, and it possesses
the advantages of high R-peaks detection sensitivity and fast
computation time [7].

In the second step, we fold each ECG heartbeat into two
halves. To perform this task, we first compute the positions
of the two endpoints in each heartbeat. For searching the
endpoints of one heartbeat, we need three consecutive R-
peaks positions, with the middle one being the heartbeat that
we want to fold. Subsequently, we acquire the two endpoints
by computing the midpoints of the positions of each two
consecutive R-peaks. Once we have the two endpoints, we
fold the ECG heartbeat into two equal halves. To explain the
folding process, let’s denote the timing positions of the two
midpoints as M1, M2, the original ECG data as D(t), and the

folded ECG data as F(x,y). Our ECG heartbeat folding then
follows the mathematical expressions:

F(1 : bM1 +M2

2
c−M1 +1,2) = D(M1 : bM1 +M2

2
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F(1 : M2−b
M1 +M2

2
c,1) = D(M2 :−1 : bM1 +M2

2
c+1).

We project the 1D ECG onto a 2D matrix with the first half
ECG directly assigned to the first row and the second half
mapped reversely to the second row of the matrix.

Finally, we rotate the folded ECG heartbeats to produce
Star-ECG. Given N number of folded ECG heartbeats, we
project them onto an image in a circular form with equally
split angle. To be more specific, we demonstrate the rotation
in the following algorithm 1: The inputs to Algorithm 1 are

Algorithm 1: Star-ECG Image Generation
Input: Folded ECG Data {F1,F2, ...,FN}, Starting
Angle θ , Sampling Rate fs

Output: Star-ECG Image Im
Im = zero( fs +1, fs +1) // Create an image of zeros;
for i = 1 : N do

C =Coordinate(Fi) ;
rx =C(x)× cos(−2π× (i−1)/N +θ) ;
ry =C(y)× sin(−2π× (i−1)/N +θ) ;
Im[rx+ fs,ry+ fs] = Fi ;

end

the folded ECG matrices along with a specified starting angle
θ and sampling rate fs; the output is a two-dimensional
Star-ECG image Im representing N ECG heartbeats. The
algorithm consists of a for loop, and in each iteration, it
projects data matrix F onto image Im with an increase in
the angle of rotation by 2π/N rad. In Fig. 1, we illustrate
an example of 12 heartbeats case.

Read a Clock: Star-ECG displays 12 ECG heartbeats in
a clockwise fashion as illustrated in Fig. 1. When designing
the number of ECG heartbeats to display in Star-ECG, we
consult both experts in cardiology and visualization. Experts
in cardiology suggested the range of ECG heartbeat number
being 10 to 15. Experts in visualization recommended to
present 12 ECG heartbeats clockwise because then reading
Star-ECG is like reading a clock. Based on the advice from
the experts, we decide to exhibit 12 consecutive ECG heart-
beats clockwise on Star-ECG. Moreover, to align with the
clock reading, we set the starting angle θ as π/3, so the first
heartbeat on Star-ECG is consistent with number 1 on the
clock. Star-ECG is anticipated to provide intuitive perception
since reading the Star-ECG is analogous to reading a clock.

Color-coded ECG Voltage: Star-ECG colors the voltage
with a Jet colormap to enhance the image readability for
the users. While painting Star-ECG, we also consult the
experts in cardiology for the range of voltages to plot. The
experts suggested a range from -0.5 to 2.5 milli-volts (mVs).
Therefore, we took the advice and set Jet colormap to span
from -0.5 mV to 2.5 mV. We map the lowest voltage to
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color dark blue and the highest voltage to color dark red.
Moreover, to intensify the contrast of R-peaks to other parts
in ECG waveforms, we assign white color to the background.
We depict an example of the contrast in the rightmost plot in
Fig. 1. The R-peak regions are short and in red-orange color
compared to the long and blue-colored low voltage segments.

D. Heart Rate Features

To enhance visualizing heart rate related information, we
add three features to Star-ECG. The first feature assists on
determining the regularity of heartbeats. The second feature
accelerates the speed of HR computation. The third feature
speeds up the calculation of HRV. We will discuss each
feature in the following paragraphs.

View Heartbeat Regularity: As depicted in Fig. 2,
we use light purple colored circles to aid visualizing the
heartbeat regularity. The origin of this circle lies in the
center of Star-ECG, and the diameter is equal to the HR
of the 1D ECG. To derive the HR, we discussed with the
expert on the HR computation. The expert recommended
computing the HR of 20 consecutive ECG heartbeats using
the following algorithm: The inputs to this algorithm are 20

Algorithm 2: Star-ECG Heart Rate Computation
Input: 20 Consecutive R-peaks Positions
{R1,R2, ...,R20}, Sampling Rate fs

Output: Star-ECG Heart Rate HR
DR = [] // Create an empty array ;
for i = 2 : 20 do

DR[i−1] = Ri−Ri−1 ;
end
HR1 = mean(DR[1 : 9]) // R-R intervals 1 - 10;
HR2 = mean(DR[6 : 14]) // R-R intervals 6 - 15;
HR3 = mean(DR[11 : 19]) // R-R intervals 11 - 20;
HR = (HR1 +HR2 +HR3)/(3 fs)

R-peaks positions and the sampling rate fs; the output of
Algorithm 2 is the computed HR. According to the expert,
the more accurate HR computation should be the average
of the heart rates of the overlapping heartbeats; therefore,
we adopt this computation strategy in Star-ECG. For the 12
ECG heartbeats on Star-ECG, they are the middle 12 ECG
beats of the 20 consecutive heartbeats.

View Heart Rate: We utilize the horizontal and vertical
ticks as the scale of the HR. To derive the HR from Star-
ECG, the users only have to refer the diameter of the circle
to either the horizontal or vertical ticks for the answer. Since
Star-ECG is pictured as a squared image of one-second side
length, we leverage the usage of the ticks by stretching the
scale from 0 to 1 for both horizontal and vertical axes (Fig.
2).

View Heart Rate Variability: To disclose the HRV on
Star-ECG, we portray two additional circles on top of the HR
circle as displayed in Fig. 2. We first compute the HRV with
the standard deviation R-R interval (SDRR) metric defined in
the study written by Shaffer and Ginsberg [8], and following

the HRV computation, we illustrate two circles on Star-ECG
with both origins at the center and diameters of HR−HRV
and HR+HRV , respectively. As a result, we arrive at the
Star-ECG shown in Fig. 2.

E. Integration of Arrhythmia Classification

To meet the last design requirement, we leverage the CNN
model to carry out the arrhythmia classification mission. We
choose one of the state-of-the-art CNN models, ResNet-
18, to train the arrhythmia classifier [9]. We classify the
arrhythmias into 12 types: normal rhythm (N), 2◦ heart
block (BII), pre-excitation (PREX), supraventricular tach-
yarrhythmia (SVTA), atrial flutter (AFL), atrial fibrillation
(AFIB), paced rhythm (P), ventricular bigeminy (B), ventric-
ular trigeminy (T), idioventricular rhythm (IVR), ventricular
tachycardia (VT), and ventricular flutter (VFL). Succeed-
ingly, we place the CNN classification result at the title
position of Star-ECG as exhibited in Fig. 2.

F. Visualizing Star-ECG

Fig. 2: Guide of reading Star-ECG. Reading Star-ECG is
analogous to reading a clock: the first ECG is near the bottom
of the brown curved arrow, and the following ECGs are
read clockwise. The voltages of ECG can be read on the
right colorbar. The HR is readable from the middle purple
circle and the scale on the tick, and we use red-colored
double-side arrows and the text HR to clarify. The HRV
is comprehensible from the inner and outer purple circles
and the scale on the tick. We use yellow-colored double-
side arrows and the text HRV to demonstrate the HRV. The
CNN arrhythmia classifier is integrated, and the classification
result is displayed in the title.

Star-ECG aims at encouraging non-experts and arrhythmia
patients to easily visualize and monitor their ECG data.
Learning to read Star-ECG is expected to be simple and
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requires no domain knowledge. A complete Star-ECG should
contain a ninja star-like color-coded ECG with a color bar,
three purple-colored circles, scale on the ticks, and the
arrhythmia classification result displayed as text in the title.
Below we describe the reading instructions of Star-ECG with
the help of Fig. 2 as guidance:

How To Read Heartbeat Regularity: Reading Star-ECG
is similar to reading a clock, and the users can perceive the
heartbeat regularity through observing the lengths and colors
of the star blades. Regular ECG heartbeats have nearly equal
lengths and the same color distribution of star blades, and the
users should visualize that all star blades’ endpoints are close
to the middle circle. Conversely, irregular ECG heartbeats
possess variant lengths or differentiated colors among the
star blades, and their endpoints are far away from the middle
circle. We provide an example of regular versus irregular
ECG heartbeats in Figures 3b and 4b.

How To Read Heart Rate: The users can straightly
compute the HR on Star-ECG. To arrive at the HR, the users
should first measure the diameter of the middle circle and
succeedingly refer its length to the scale labeled on the ticks.
The approach is analogous to calculating the distance from
the start point to the destination on a map.

How To Read Heart Rate Variability: To obtain the
HRV, the users can refer the distance between the inner circle
and the outer circle to the scale on the ticks. The method is
very similar to obtaining the HR on Star-ECG.

How To Read Arrhythmia Type: The users can read the
arrhythmia type classified by the CNN model in the title of
Star-ECG. In addition, the users can perceive the existence
of arrhythmia through observing the patterns of the star
blades. According to the cardiology experts, arrhythmia can
be abnormal HR, abnormal waveform, or abnormal intervals
of some characteristic points in ECG. Thus, the users can
perceive the arrhythmia by visualizing the consistency of
the colors, the lengths, and the positions of R-peaks in the
12 star blades. A healthy user should observe 12 consistent
star blades in length, color, and fiducial points’ position.
While for users having abnormal cardiac activities, they will
cognize the inconsistent patterns across the 12 star blades.
We present the examples of normal and arrhythmia Star-ECG
in Figures 3b and 4b.

G. Participants and Dataset

We recruited 13 volunteers in our study with the approved
consent form. All the volunteers did not have color vision
deficiency. Ten volunteers do not have any cardiology ex-
pertise, while three volunteers do. They are aged 22 - 62
(mean: 38) and from different technical backgrounds. All the
participants conducted the experiments through visualizing
the data on the screen.

We used the MIT-DB dataset to run on Star-ECG. MIT-
DB dataset is a popular publicly available arrhythmia dataset
and has been employed in over thousands of studies relevant
to cardiac abnormalities [10], [11].

H. Tasks

We designed four tasks for the participants to complete.
In all the four tasks, the participants were asked to complete
with both traditional 1D-ECG and Star-ECG. The four tasks
were:
• T1: Identify Heartbeat Regularity
• T2: Compute Heart Rate
• T3: Compute Heart Rate; Variability
• T4: Classify Arrhythmia Type.
For tasks T1-T3, every volunteer was invited to accom-

plish. For task T4, only the experts were invited to participate
since it requires the domain knowledge.

I. Procedure

The study started with a brief tutorial to the participants
about reading 1D-ECG and Star-ECG. We showed the par-
ticipants how regular and irregular heartbeats looked on 1D-
ECG and Star-ECG. Moreover, we demonstrated how to
compute the HR and HRV with 1D-ECG and Star-ECG to
the participants. Next, we asked the participants to complete
the four tasks and timed the completion time. For tasks T1-
T3, we asked the participants to carry out the tasks with the
cases illustrated in Figures 3 and 4. For task T4, we had
the experts classify the 12 arrhythmia types as displayed
in the supplementary files. After the participants finished
the tasks, we conducted an interview with each participant
to collect their feedback. In the interview, we asked the
participants about their choice between the two visualization
tools to perform the given tasks. Besides, the participants
were encouraged to provide reasons over their choices and
criticisms on Star-ECG.

Concerning the quantitative performance of the CNN
model, we followed exactly the same data segmentation
setting in Yildirim et al.’s work [12] except that they used the
1D-ECG and we trained the CNN with Star-ECG images.

III. RESULTS OF VISUALIZATION TASKS

We present the results in the order of the numbering
of the tasks. In each task, we will first exhibit the time
of completion and next the categorized feedback from our
participants.

T1 Time of Completion: All the participants successfully
identified the regular and irregular ECG patterns on 1D-ECG
and Star-ECG. The participants spent an average time of 12
seconds (SD = 3.4) to complete T1 using Star-ECG and 31
seconds (SD = 5.2) using 1D-ECG. Based on the results,
visualizing heartbeats regularity on Star-ECG is 2.58x faster
than on 1D-ECG.

T1 Interview Feedback: As exhibited in Table I, we
received positive feedback on Star-ECG from most partic-
ipants (80%) and neutral responses from all three experts.
The participants voting for Star-ECG enjoyed the ease of
visualizing 12 ECG heartbeat lengths. Participant N3 said “
I like the idea of an auxiliary circle plus the ninja star blades.
I can quickly notice the irregular heartbeats on a circular
plot but not the 1D wave.” Participant N6 said “ I like
the color-coded ECG because I have difficulty interpreting

2818



(a) 1D Normal ECG (b) Normal heartbeats on Star-ECG with the HRV circles

Fig. 3: Exhibition of normal’s 1D-ECG (left) and Star-ECG (right) used in the interview.

(a) 1D Abnormal ECG (b) Abnormal heartbeats on Star-ECG with the HRV circles

Fig. 4: Exhibition of arrhythmia’s 1D-ECG (left) and Star-ECG (right) used in the interview.

TABLE I: Results of the tasks. The users choose their
preferences between Star-ECG and 1D-ECG to complete the
tasks. X stands for the scenario that the participants can
observe regularity easily on both Star-ECG and 1D-ECG.

ID Heartbeat Regularity Heart Rate Heart Rate Variability
Observation Computation Computation

E1 X Star-ECG Star-ECG
E2 X Star-ECG Star-ECG
E3 X Star-ECG Star-ECG
N1 Star-ECG Star-ECG Star-ECG
N2 X Star-ECG Star-ECG
N3 Star-ECG Star-ECG Star-ECG
N4 Star-ECG Star-ECG Star-ECG
N5 Star-ECG Star-ECG Star-ECG
N6 Star-ECG Star-ECG Star-ECG
N7 Star-ECG Star-ECG Star-ECG
N8 X Star-ECG Star-ECG
N9 Star-ECG Star-ECG Star-ECG
N10 Star-ECG Star-ECG Star-ECG

the ups and downs on a one-dimension ECG. The colors
definitely enhance the readability of ECG.”As for the experts
and two non-experts, they mentioned that they encountered
no difficulties visualizing ECG regularity on both 1D-ECG
and Star-ECG.

T2 Time of Completion: All the participants successfully
figured out the HR on Star-ECG, but not on 1D-ECG.
Participants N9 and N10 did not complete T2 on 1D-ECG.
We considered all the successful cases and found out that
the participants spent an average time of 6 seconds (SD =
2.2) to complete T2 using Star-ECG and 454 seconds (SD =

63) using 1D-ECG. Based on the results, computing the HR
is 75.7x faster on Star-ECG than on 1D-ECG.

T2 Interview Feedback: We received 100% positive
feedback on Star-ECG from our participants upon finishing
task T2 as listed on Table I. We summarized the interview
talks from all the participants and concluded with the mainly
two supportive reasons:

1) Ease of use: Users of Star-ECG can directly compute
the HR instead of tracing the whole 1D-ECG, which
takes several minutes to complete. Every recruited
participant agreed with it.

2) Transferable skill: Users can apply their knowledge
on computing the distance on the map to calculating
the HR on Star-ECG. Participants N2, N4, N5, N7,
N9 approved such transferable knowledge. Participant
N7 reported “Star-ECG is really interesting! I didn’t
realize we can measure time distance in this way as
we do on Google Map until now!”

For the two non-experts who were unable to complete
T2 on 1D-ECG, they complained that 1D-ECG required
complicated computations that they could not afford.

T3 Time of Completion: All the participants successfully
figured out the HRV on Star-ECG, but not on 1D-ECG. Only
the experts and participants N2, N8 complete T3 on 1D-
ECG; the rest of the participants did not arrive at the HRV
with 1D-ECG. We considered all the successful cases and
found out that the participants spent an average time of 8
seconds (SD = 4.3) to complete T3 using Star-ECG and 632
seconds (SD = 101) using 1D-ECG. Based on the results,
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computing the HR is 79x faster on Star-ECG than on 1D-
ECG.

T3 Interview Feedback: We also received 100% positive
feedback on Star-ECG (Table I). More importantly, all the
experts endorsed the HRV visualization on Star-ECG. Expert
E1 said, “The straightforward HRV visualization is great.
I am willing to use it to monitor the patients’ health
status.” Expert E2 mentioned, “The HRV idea is good.
I hope you keep doing the great work.”Expert E3 stated,
“The HRV is doable, really really exciting! It can bridge
the communication gap between the patients and us.” For
other participants without the expertise, they mentioned the
concept of HRV was difficult to comprehend and that the
computation loading was even heavier than computing the
HR on 1D-ECG. Therefore, they would favor Star-ECG over
1D-ECG for task T3.

A. Results of Arrhythmia Classification T4

We present the CNN classification result and the feedback
from the experts on task T4.

Quantitative Results: We showcase the competitiveness
of the Star-ECG CNN model in Table II. Star-ECG out-
performs the state-of-the-art 1D-ECG CNN model with an
overall accuracy of 92.6%. Moreover, Star-ECG beats 1D-
ECG in the sensitivity of some of the classes: normal rhythm,
supraventricular tachyarrhythmia, ventricular bigeminy, ven-
tricular trigeminy, and ventricular flutter.

Validation with Experts: We interviewed with the experts
about their opinions on arrhythmia classification and received
helpful feedback. Every expert liked the CNN model of Star-
ECG, especially the sufficiently high classification accuracy.
However, the experts were concerned about reading arrhyth-
mia directly through Star-ECG visualization. According to
expert E1, “I like the way combining CNN together with Star-
ECG. It helps me to make accurate arrhythmia diagnosis.
However, if I were to classify arrhythmia through reading
the star blades only, I would still go with 1D-ECG.” Expert
E2 said, “CNN is great, but I would suggest visualizing
multiple ECG-leads on Star-ECG instead of a single lead
for arrhythmia decision. It is easy to visualize specific types
of arrhythmia on Star-ECG, such as ventricular bigeminy
and trigeminy, but not those relative to abnormal P-wave
segments.” Expert E3 mentioned, “I would still choose
1D-ECG because some detailed waveform information is
not obvious to read on Star-ECG. Nevertheless, I would
recommend showing Star-ECG to the patients instead of
1D-ECG for basic understanding of cardiac abnormalities.”
In summary, the experts believed that Star-ECG would be
a good visualization tool for non-experts, and CNN was a
brilliant idea. Nevertheless, the experts would like to view
additional physiology information on Star-ECG in order to
have confidence on making precise arrhythmia diagnosis.

IV. DISCUSSION

Based on the results, Star-ECG has showcased its effec-
tiveness over conventional 1D-ECG in visualizing heartbeat
regularity, heart rate, and heart rate variability, especially for

people without the cardiology expertise. Furthermore, the
integrated CNN model enhances the functionality of Star-
ECG.

Visualization Tasks: Star-ECG succeeded in providing
easy visualization in terms of the heartbeat regularity, heart
rate, and its variability. For the heartbeat regularity, the
circular star-blades, auxiliary circle, and color-coded ECG
were pointed out to be helpful in the judgment. With respect
to HR and HRV, Star-ECG was favored due to its readability.
What’s more significant, the experts approved the HRV
visualization and are willing to put into clinical practice.

Arrhythmia Classification: The integration of CNN
model won positive feedback from the experts, and the devel-
oped CNN model has achieved state-of-the-art performance.
Although some detailed physiology information is difficult to
read due to its simplicity, Star-ECG is recommended by the
experts to provide the fundamental learning of arrhythmia to
users without the domain knowledge. We found the good
classification performance reasonable since CNN models
have been shown to perform excellent in recognizing the
patterns of ECG images [13], [14].

Limitations: Based on the collected feedback from both
experts and non-experts, we have discovered certain limita-
tions of the current Star-ECG:
• Demand for detailed physiology: Star-ECG provides

friendly visualization of certain features due to its
simplicity, but such simplicity hinders the detailed phys-
iology information from display. In addition, one of the
experts mentioned that visualizing multiple ECG leads
could strengthen the confidence in arrhythmia diagnosis.

• Constraints on the user’s activity: The experts
pointed out that Star-ECG might not function as ex-
pected if the users are performing extreme physical
exercise. Therefore, to manage such scenario, Star-
ECG should integrate advanced ECG signal processing
technology.

V. CONCLUSION AND FUTURE WORK

In this paper, we present Star-ECG, a novel ECG visualiza-
tion tool. We describe the procedure to transform a traditional
one-dimensional ECG into Star-ECG and showcase the effec-
tiveness of Star-ECG in visualizing the heartbeat regularity,
heart rate, and heart rate variability. Besides the innovative
visualization, we also integrate deep learning technology and
deliver a state-of-the-art arrhythmia classifier. Moreover, we
receive positive feedback on Star-ECG visualization from
both the experts and people without the medical expertise.

In our future work, we aim at addressing the limitations
of the current Star-ECG. We plan to add more physiological
features into a new version of Star-ECG. Furthermore, we
intend to investigate the visualization techniques for multiple
ECG leads.
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TABLE II: Arrhythmia classification performance of the state-of-the-art work and this study. Rhythm types are abbreviated
as described in Section II arrhythmia classification part.

Method Sensitivity (%) Accuracy
N BII PREX SVTA AFL AFIB P B T IVR VT VFL (%)

1D-ECG [12] 94.4 100 100 50 100 94.4 100 66.7 0 100 50 100 89.4
Star-ECG [Ours] 95.0 88.2 42.9 100 41.2 86.1 98.1 86.2 66.7 0 33.3 100 92.6
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