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Abstract— Vital signs monitoring is critical for healthcare.
Currently, at-home vital signs monitoring is obstructed by
the complicated device, unaffordable cost, and inconvenience.
In this study, we develop a simultaneous heart rate and
respiratory rate monitoring technique that requires only one
tri-axial accelerometer placing on the sternum. We devise a
signal processing technique to generate seismocardiography
and respiratory vibration from the raw acceleration data;
furthermore, we formulate the algorithms to compute the heart
rate and respiratory rate from the processed signals. We tested
the methodology on 20 young healthy adults during pre-exercise
and post-exercise sitting. The accuracy of 98.3% and 97.3%
are achieved in heart rate monitoring during pre-exercise
and post-exercise sitting. For respiratory rate, an accuracy of
96.8% is accomplished. Given the accuracy, affordable cost
and convenience, the acceleration-based technique shows great
promise for at-home vital signs monitoring.

Clinical relevance— Portable heart rate and respiratory rate
monitoring is substantial in elevating the quality of healthcare
environment.

I. INTRODUCTION

Vital sign monitoring is essential for health evaluation and
enhance early detection of cardiovascular disease. Accessible
accurate heart rate monitoring has the potential to decrease
the global mortality rate and reduce the economic loss [1]. In
addition to heart rates, real-time respiratory rate monitoring
is substantial for the preventive care of the COVID-19.

Numerous techniques have been proposed to monitor heart
rates, including electrocardiography (ECG), photoplethys-
mography (PPG), ballistocardiography (BCG), and seismo-
cardiography (SCG). ECG has been known to be challenging
for an untrained user to implement in a domestic environ-
ment. Plus, ECG is not suitable for long-term usage due to
the irritation caused by the electrodes. PPG is relatively easy
to use, but intra-beat information is difficult to be extracted
from PPG [2]. Additionally, PPG is easily corrupted by
motion artifacts [3]. While BCG captures the morphology
of the mechanical cardiac activity, it cannot be measured by
a portable device [4]. SCG records the dorsal-ventral motion
induced by the heart’s contraction and ejection of the blood
from the ventricles to the vascular tree. More importantly,
SCG can be detected by placing an accelerometer on the
chest. Nevertheless, removing the motion artifacts from SCG
still remains as a challenging task.
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Few studies report promising results using SCG to monitor
heart rates [2], [5], [6]. In Wahlstrom et al.’s study [5],
hidden Markov models (HMM) are applied. While in Tadi
et al.’s research, Hilbert transform is performed on the SCG
signal for heart rate estimation. State-of-the-art achievement
has been made by DMellos et al. with leveraging both SCG
and gyrocardiography (GCG). Although successful heart rate
monitoring is achieved, all require the humans lying on the
bed during measurement.

In this study, we demonstrate adopting SCG data for both
heart rate and respiratory rate monitoring. Our strategy al-
lows the person to sit normally in a chair during monitoring.
We show the efficacy of the proposed methodology in 20
young healthy adults.

II. METHODS

We start with the description of our data collection method.
Subsequently, we dive into the sensor data processing step.
Following that, we present our heartbeat labeling and respi-
ratory rate computation algorithm. Finally, we elaborate on
how we quantify the performance of the proposed method-
ology.

A. Data Collection

This study was approved by the Jen-Ai Hospital-Joint
Institutional Review Board. We recruited 20 young healthy
volunteer to undergo the data acquisition process. All 20
subjects provided the written informed consent to participate
in the study on their own will. The age of the recruited par-
ticipants lies within 25−32 years, and the gender distribution
is 6 females and 14 males.

TABLE I
DESIGN OF EXPERIMENTS

Activities sitting before & after a 3-minute exercise
Duration each activity lasts for 3 minutes

Sensor Placement at the bottom of the sternum
Description participants wear the sensor

throughout the whole experiment
Sensor one tri-axial accelerometer

Measurements accelerations, heart and respiratory rates

We summarize the experimental design in Table I. All the
participants went through two activities: sitting before and
right after a 3-minute walking exercise. For each activity,
the participant stays as still as possible in the same posture
for three minutes with the wearable sensor placed on the
body. As for the walking exercise, the participants are asked
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to walk consistently and continuously at their normal pace
for three minutes.

The collected data include body acceleration, heart rate,
and videoed respiratory rate. Throughout the whole exper-
iment, the acceleration data are measured with the sensor
placed on the participant’s sternum (as shown in Fig. 1). The
acceleration sensor is MPU-6050 [7], and the data sampling
rate is 150Hz. During the two sitting activities, the heart rate
is measured using Rossmax MG150f. This blood pressure
monitor was certified by European Society of Hypertension
and clinically validated by British Hypertension Society with
an A/A grade. All the data acquisition was completed by
the same person, who was well trained by an experienced
registered nurse to perform the measuring. Moreover, before
the start of each activity, the same person inspected all the
sensor to be well-functioning. The referenced respiratory rate
was collected through video-recording the subject’s normal
breathing while sitting still in the chair.

Fig. 1. Accelerometer placed on the sternum.

B. Sensor Data Processing

We process and decompose the raw acceleration signals
into two datasets - one set for heart rate and the other for
respiratory rate computation. For heart rate, we develop a
three-step signal processing procedure. First, for vertical and
dorsal-ventral acceleration, we remove the low-frequency
motion artifact with a third-order Savitzky-Golay filter of
100ms span, which has been shown effective in removing
running motion artifact in [8]. Next, we clean the high-
frequency noise with a sixth-order low-pass Butterworth
filter. We set the cut-off frequency at 35Hz, which is often
used in ballistocardiogram and SCG extraction [7]. Finally,
we smooth the data through interpolation with spline cubic
curves at 750Hz. We demonstrate the raw and processed
acceleration signals in Fig. 2.

For breathing rate data generation, our proposed strategy is
similar to the heart rate data processing. Different from heart
rate dataset, we utilize only the dorsal-ventral acceleration
signal for respiratory rate computation. In the first step, we
take the residual of the Savitzky-Golay filtered heart rate
data, which is a byproduct in the first step of the heart
rate dataset construction. Subsequently, we remove the data
offset, which is caused by the gravity and other constant
motion effect. Next, we pass the processed data into a
sixth-order low-pass Butterworth filter with a 0.5 Hz cutoff
frequency. Eventually, we perform interpolation at 750Hz to
smooth the data.

(a) Raw Data

(b) Processed Data

Fig. 2. Demonstration of raw and processed acceleration data. Red:
Vertical; Green: Horizontal; Blue: Dorsal-ventral

C. Heart Rate Computation

There are mainly five steps in our heart rate computation
algorithm: 1) initial heartbeat labeling, 2) waveform-based
heartbeat detection, 3) false positive heartbeat removal, 4)
search-back for the missing heartbeat, and 5) heart rate
estimation.

Initial heartbeat labeling: We first input the vertical
and dorsal-ventral accelerations into our Heartbeat Labeling
Algorithm (1) separately, and then we sift the peaks that
deviate less than 10ms between vertical and dorsal-ventral
accelerations as the valid heartbeats. The concept behind
the algorithm is to identify the maximum peak in each
empirically reasonable time window, which is also used in
other heartbeat detection studies [8], [7].

Waveform-based heartbeat detection: In this step, we
utilize the waveform to correct the potential erroneous or
miss-labeled heartbeats from Step 1, which is an approach
shown to be effective in [9]. Based on the fact that noise-
removed SCG is a quasi-periodic signal, we derive the enve-
lope of the dorsal-ventral acceleration to capture the signal’s
intrinsic quasi-periodicity. Such envelope is determined using
spline interpolation over local maxima separated by at least
samples of 200ms. If there exists no heartbeat peak in an
envelope, we mark the maximum peak as heartbeats. In
another case, if there are multiple heartbeats detected in an
envelope, we remove heartbeats inside this envelope.

False positive heartbeat removal: In this process, we
remove the false positive heartbeats. We compute the heart-
beats’ intervals and consider only the interval lying within
0.5s−1.2s as reasonable period. Subsequently, we calculate
the mean and standard deviation (STD) of the selected
intervals. Last, we remove the false positive heartbeats,
which are those with intervals being less than mean−ST D.

Search-back for the missing heartbeat: Some heartbeat
peaks could have been falsely removed in the previous pro-
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Algorithm 1: Heartbeat Labeling Algorithm
Input: One-dimensional Acceleration Data D
Output: Heartbeat Peaks indices
Initialize the size of the sliding window;
peaks = [ ];
current = 1s;
delay = 0.5s;
window = sampling rate;
while current + window < D.size do

if peaks.is empty then
start = 1;
last = window;

else
start = current + delay;
last = current + window;

end
current = start + D[start:last].max index;
peaks.push(current-1);

end

cess, and in this procedure, we search the missing heartbeats
back. We identify the heartbeats as missing when we detect
an interval of two consecutive heartbeats being longer than
1.2s. Next, we compute the number of heartbeats to be
detected through peak-to-peak length estimation as we did
in the previous step. Eventually, we enforce the number
of heartbeats and label the missing heartbeats within the
selected interval using Algorithm 1.

Heart rate estimation: We average out the interval length
between every two consecutive heartbeats and round the
number to obtain the heart rate of a subject.

D. Respiratory Rate Computation

We apply Fourier Transform and spectrum peak detection
to conduct respiratory rate estimation. Once we acquire the
respiration-oriented processed dorsal-ventral acceleration, we
use Fourier Transform directly on the processed signal.
Following that, we search the peak near 0.2 - 0.4 Hz on
the frequency spectrum. Eventually, we treat the frequency
that produces the largest peak near the specified range as the
respiratory rate.

E. Performance Evaluation

We compare the estimations with the ground truth to
evaluate the performance of the proposed algorithms. For
heart rate, we calculate the accuracy by using the expression

estimation
real heart rate × 100%. For respiratory rate, we first compute
the true respiratory rate through the video-recording, and
then adopt the accuracy metric to evaluate the algorithm.
Moreover, we will visualize the different respiratory rates
of the same subject in two different activities: sitting still
pre-exercise versus post-exercise.

III. RESULTS & DISCUSSION

We first exhibit the heart rate and respiratory rate accuracy
of the 20 participants in Table II. Following that, we present

the visualization of the combined signals and respiratory
rate in different activities. Finally, we compare the averaged
accuracy with other existing SCG-based methods in Table
III.

TABLE II
RESULTS OF THE HEART RATE AND

RESPIRATORY RATE ESTIMATION MODELS

Accuracy of Accuracy of Accuracy of
Subject sitting post-exercise sitting

heart rate (%) heart rate (%) respiratory rate (%)
1 98.9 98.9 ≈ 100
2 100 78.7 ≈ 100
3 98.6 98.7 ≈ 100
4 95.7 90.3 ≈ 100
5 96.6 99.0 ≈ 85
6 100 98.6 ≈ 100
7 100 100 ≈ 100
8 100 96.8 ≈ 100
9 100 98.7 ≈ 100

10 100 98.7 ≈ 80
11 100 100 ≈ 100
12 91.7 100 ≈ 100
13 98.6 100 ≈ 85
14 93.0 93.1 ≈ 100
15 100 98.7 ≈ 100
16 98.8 96.7 ≈ 85
17 98.5 100 ≈ 100
18 98.7 100 ≈ 100
19 100 98.8 ≈ 100
20 96.5 100 ≈ 100

overall 98.3 97.3 ≈ 96.8

A. Efficacy of Heart Rate Estimation
According to the accuracy numbers in Table II, we observe

higher heart rate accuracy in sitting still compared to sitting
after walking. In sitting still activity, every estimated heart
rate reaches an accuracy greater than 90%, and overall,
the model accomplishes an accuracy of 98.3%. Conversely,
sitting post-exercise generates larger error in average. One
subject appears to have a badly estimated heart rate (< 80%).
Nevertheless, the heart rate estimation model still achieves
an accuracy of 97.3% in post-exercise heart rate estimation.
In addition, we display an example of labeled heartbeats
in Fig. 3. From the figure, we can perceive the quasi-
periodic heartbeat peaks labeled in the SCG with the devised
algorithm.

B. Efficacy of Respiratory Rate Estimation
We present the accuracy of respiratory rate in Table II,

exhibit combined heartbeats and breathing acceleration in
Fig. 3, and display the respiratory rates of two activities in
Fig. 4. Promising results are observed from both the table
and the figures. From the table, we are able to showcase that
the model has successfully estimated sixteen out of twenty
participants with nearly 100% accuracy. When comparing
post-exercise respiratory rate to sitting still, we observe sharp
increase in 95% of the participants in Fig. 4. Subject 4’s
respiratory rate does not surge in post-exercise activity, and
it might be due to the fact that Subject 4 jogs on a regular
daily basis.
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Fig. 3. Visualization of both labeled heartbeats and breathing data. Red asterisks are the heartbeat peaks labeled by our algorithm.

Fig. 4. Visualization of respiratory rate in before versus after exercise.
Blue circle stands for pre-exercise, and red circle for post-exercise.

C. Comparison with State-of-the-Art Works

TABLE III
COMPARISON OF HEART RATE ACCURACY TO STATE OF THE ART

Method Accuracy Posture
Hidden Markov Model SCG [5] 98.5 Supine

Hilbert Transform SCG [6] 99.4 Supine
SCG + GCG [2] 99.8 Supine

Ours - multi-channel SCG 98.3 Sitting still
Ours- multi-channel SCG 97.3 Sitting post-exercise

We demonstrate the competitiveness of the proposed heart
rate estimation model by comparing the results with the
state-of-the-art works that also utilize SCG to compute heart
rates. The highest accuracy is achieved by D’Mello et al.
using SCG and gycocardiography together to estimate the
heart rate [2]. However, all the existing studies require the
participants to stay in a supine position. Such posture restricts
the subjects from performing normal activity. In our proposed
methodology, we successfully achieve > 97% accuracy in the
sitting posture. More importantly, it does not matter whether
the person is sitting still or panting in the chair due to the
exercise.

IV. CONCLUSIONS

We devise a seismocardiogram-based methodology that
can accurately monitor the heart rate and respiratory rate.
We demonstrate that such method is both ultra-convenient
and cost-efficient in 20 young healthy participants, which
requires only one sensor placing on the sternum. More
importantly, the person can sit normally in a chair during
monitoring. Based on the results, wearable SCG may be
promising to apply in both daily and clinical monitoring.
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