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Abstract— This paper applies a kernel-based nonparametric
modelling method to estimate the heart rate response during
treadmill exercise and proposes a model predictive control
(MPC) method to perform heart rate control for an automated
treadmill system. This kernel-based method introduces a kernel
regularisation term, which brings prior information to the
model estimation phase. By adding this prior information, the
experimental protocol can be significantly simplified and only
a small amount of model training experiments are needed.
The model parameters were experimentally estimated from 12
participants for the treadmill exercise with a short and practical
exercise protocol. The modelling results show that the model
identified using the proposed method can accurately describe
the heart rate response to the treadmill exercise. Based on
the identified model, an MPC controller is designed to track
a predefined reference heart rate profile. An advantage is the
speed and acceleration of the treadmill can be limited to within
a safe range for vulnerable exercisers. The proposed controller
was experimentally validated in a self-developed automated
treadmill system. The tracking results indicate that the desired
automatic treadmill system can regulate the participants’ heart
rate to follow the reference profile efficiently and safely.

I. INTRODUCTION

During physical exercise, as the intensity of exercise
changes, the cardiovascular system adjusts to the amount of
blood and oxygen delivered to the working muscles, resulting
in heart rate (HR) changes and respiratory rate changes.
Creating a mathematical model for the cardiovascular system
might give us a better understanding of exercise physiology
[1]. Comprehending the aetiology of HR behaviours through-
out the course of an exercise may also help predict and
reduce the mortality from cardiovascular disease [2]. This
is also conducive to improving athletes’ performance and
designing more effective weight loss procedures for obese
people. It also helps to assess individual physical health [3].

Modelling and controlling HR response during treadmill
exercise has received considerable attention in the [4]–[6].
The variance of HR response measurement can be quite
large because of the limitation of HR sensor accuracy and
dislocation of the sensor [7]. Also due to the complexity
of the human cardiovascular system, it is hard to use a
simple parametric model to describe the responses of the
cardiovascular system to exercise. Accordingly, in this paper
we employ a nonparametric model, called a finite impulse re-
sponse (FIR) model, to describe the HR response. However,
due to the fact that the size of the FIR model is relatively
large, the traditional system identification method usually
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Fig. 1: The proposed automatic treadmill system and speed profile
during the identification period. (A) Resting. (B) Walking.
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Fig. 2: Schematic of the automatic treadmill system

requires a very complicated dynamic input to provide enough
information for the model establishment, which will in turn
lead to a long experiment time and sharp variations during
model estimation. The inherent ill-posed problem caused
by sensor noise and insufficient dynamic information can
be solved by adding the regularisation term in the index
function. This term reforms the problem into a regularised
least square estimation (ReLS) problem [8]. However, ReLS
only solves the ill-condition problem and is incapable of
providing any prior information to the model estimation
process. To this end, we reform the FIR model estimation
problem as Gaussian Process modelling [9]. By adding a
kernel term in reproducing kernel Hilbert space (RKHS), the
prior information is embedded in the identification process
by assigning a covariance which is also called a kernel in the
machine learning field [10]. The participation of this prior
information means fewer experiments can provide enough
information for model identification. The contributions of
this study are summarised as follows: (a) An effective kernel-
based nonparametric modelling method is developed for
identifying the HR response model. By applying this method,
we can significantly reduce the number of experiments and
the complexity of the experimental protocol to reach the
desired modelling accuracy. (b) An effective HR tracking
controller is developed by integrating the proposed nonpara-
metric modelling method and the MPC. This new model
predictive controller can also limit the speed and acceleration
ranges to ensure the safety of the exercisers. To the best of the
authors’ knowledge, it is the first time that the kernel-based
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nonparametric modelling approach has been integrated with
MPC control for HR regulation during treadmill exercises.
(c) The proposed modelling and control algorithms have
been experimentally validated on 12 participants and have
achieved the desired HR tracking accuracy.

II. KERNEL-BASED ESTIMATION METHOD OF HEART
RATE RESPONSE MODEL

The heart rate (HR) response model can be dynamically
described by its impulse response g(k) as follows:

y(t) =

∞∑
k=1

g(k)u(t− k) + e(t), t = 1, 2, . . . N, (1)

where the e(t) is the noise, and N is the total number of
sampling. We can compute the system output y(t), here it
is the HR, by knowing the corresponding impulse response
g(k) and input signal u(t), here it is the treadmill speed. In
general, e(t) is supposed to be independent of u(t).

For a stable system, its impulse response decays exponen-
tially. Thus, the system can be approximately decrypted by
its mth order finite impulse response (FIR):

y(t) =

m∑
k=1

g(k)u(t− k) + e(t), t = 1, 2, . . . N. (2)

When we stack all the rows in y(t) and u(t) to the vectors
form and define [g(1), g(2), . . . , g(m)] = θ ∈ Rm, then
equation (2) becomes

Y = φθ + E. (3)

Apparently, the least-squares estimator of the model (2) is

θ̂ = arg min
θ
||Y − φθ||2. (4)

In industrial applications, when the experiments are well
designed (e.g., PRBS inputs) and comprehensively per-
formed, the information matrix associated with equation Eq.
(4) contains enough information to identify the parameter.
As a result, even a classical least-square estimator can
be applied to identify θ̂ which is the parameter of the
nonparametric model. However, for the physiological model,
in which human factors are involved, the experiments are
often limited to input strength and duration. While the
experimental protocol should not be too complicated, this
is often the case for the modelling of the HR impulse. To
ensure the safety of the treadmill exercisers, the input signal
(i.e., the profile of the treadmill speed) is often confined
to rectangular with moderate magnitude (treadmill speed).
That is why most existing literature uses a simple parametric
model, often a first-order model, to approximately descript
the HR response to treadmill speed. To better accommo-
date the differences of various exercisers, a nonparametric
model can be employed. This has the potential to develop
personalised sports medicine based on accurate prediction of
the cardiorespiratory response to exercise. However, using a
high dimension impulse response model with limited model
stimulation often leads to an ill-conditioned problem, i.e. a
small error in the measurement can lead to a large estimation

error. To address this issue, a commonly used technique is
that of adding a regularisation term to the estimator (4). In
contrast to the regularised least square estimation (ReLS)
method introduced in [8], we add a kernel regularisation term
to the estimator [11]

θ̂ = arg min
θ
||Y − φθ||2 + γθTβ−1θ

= βφT
(
φβφT + γIN

)−1
Y,

(5)

where the second item is a kernel regularisation term that
denotes the squared Euclidean norm in reproducing kernel
Hilbert space (RKHS). β is an N-by-N kernel matrix con-
taining the prior information of FIR. Comparing to the ReLS
method, the advantage of the kernel method is that it has a
stronger capacity to minimise the mean square error of FIR.
The ReLS method only considers solving the ill-condition
problem. More importantly, the prior information brought
by the kernel allows us to build an impulse response model.

III. MPC CONTROLLER DESIGN

During treadmill exercise, the walking speed and acceler-
ation must be limited to within a safe range to guarantee the
safety of exercisers. Because model predictive control (MPC)
has the inherent ability to deal with constraints, it is the
most suitable choice. MPC depends on the dynamic model
of the process to predict and optimise the future behaviour
of the process. MPC uses current measurements, including
the dynamic information of the current process, the model,
process reference trajectory, and constraints, to calculate
future changes in manipulated variables. MPC usually only
implements the first optimal sequence to the plant and repeats
the calculation when the next change is needed.

Let y(t) and ŷ (t+ 1|t) represent the current measurement
and predicted measurement, respectively. The control output
ut, ut+1, . . . ut+q−1 can be obtained by solving the following
constrained optimisation problem [6]:

minimize
∆ut . . .∆ut+q−1

p−1∑
l=0

||ŷt+l+1 − rt+l+1||2Qy
+

q−1∑
l=0

||∆ut+l||2S

subject to umin ≤ ut ≤ umax t = 0, . . . , N − 1,

∆umin ≤ ∆ut ≤ ∆umaxt = 0, . . . , N − 1.
(6)

Use the kernel-based nonparametric model to predict the
future output of a certain range p (called the prediction
horizon) at each time t. These future outputs ŷ are predicted
based on the given information (past inputs and outputs) up
to time t and the future control output u generated by the
controller up to time t + q, where q is called the control
horizon. Qy and S are the penalty matrix for prediction errors
and control moves. Here, u and ∆u are constrained speed
and acceleration, respectively.

Based on the model θ = [g(1), g(2), . . . , g(m)] estimated
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TABLE I: Participant information.

Col 1 Mean SD Range

Age(year) 28.67 0.94 27-30
Body mass(kg) 66.58 13.07 50-86
Height(cm) 174 10.35 156-187
BMI(kg/m2) 21.75 2.22 18.37-24.59

n=12, 5 female, 7 male.

by Eq.5, the predictor can be described as:

ŷ(t+ l|t) =

l∑
k=1

g(k)u(t+ l − k) +

m∑
k=l+1

g(k)u(t+ l − k)

+ ym(t)−
m∑
k=1

g(k)u(t− k),

(7)
where ym(t) is the measured value at time t.

IV. EXPERIMENTS AND DISCUSSION

In this section, we introduce the procedure of the experi-
ment and discuss the result. The experiment is divided into
two phases. The first one is the model estimation phase,
which builds the HR response model for each participant
by using the kernel-based estimation method. The second
phase is MPC control by using the proposed model. In this
phase, we achieve HR tracking with constrained speed and
acceleration.

The modelling and control data was obtained from 12 par-
ticipants. The detail is shown in Table I. The experiment was
performed under the approval of the UTS Human Research
Ethics Committee (ETH17-1758). The data collection was
based on voluntary participation, and the informed consent
from all participants was obtained before the data collection.

Before each phase, the participants were permitted to
consume a light meal 2 h before the experiment. High-
intensity exercise was not allowed 3 h before the experiment.
Each participant wore a wireless HR sensor and stood on the
treadmill for 2 minutes before the experiment started. The
room temperature was set to 22 °C.

A. Experimental Equipment

The proposed heart rate (HR) regulation treadmill sys-
tem and its MPC control system are shown in Fig.1. A
TRACKMASTER FVX 325 medical-grade treadmill, which
is manufactured by Full Vision Inc, is used in the automated
system. This system can send treadmill speed to a personal
computer and manipulate the treadmill speed via the serial
port. The HR is measured by a wireless wearable Zephyr HR
sensor. The sensor collects the analogue electrocardiogram
signal and calculates the HR by using the edge detection
method. The sensor transmits HR data to the control sys-
tem every second via Bluetooth. However, it is observed
that the measured HR is often polluted by electromagnetic
interference generated by other environmental equipment.
To address this issue, we use the proposed kernel-based
nonparametric MPC for HR tracking.
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Fig. 3: (Top) Typical estimated heart rate comparison between
Kernel method and LS method. (Bottom) The estimated impulse
response for one participant.

B. Model Estimation

In the model estimation phase, the participants are required
to walk on the treadmill according to the desired speed
protocol shown in Fig.1. They first stand on the treadmill
for 80 seconds. Then, they are asked to walk at 3 km/h for 3
minutes, followed by a faster walk at 6 km/h for 3 minutes.
Then, another walk for 160 seconds at a speed of 3 km/h.
The entire process takes 10 minutes, including 80 seconds
resting period. The expertise protocol is relatively easy as it
only contains two accelerations. The exerciser is informed 5
seconds before each acceleration.

For the finite impulse response model Eq.(2), the order
m was selected as 250 and the sampling time was selected
to 1 second. The proposed kernel-based estimator Eq. (5)
was employed to identify the FIR model by using the
Tuned/Correlated (TC) kernel, Diagonal kernel (DI) kernel,
and Stable spline (SS) kernel. The fit error is defined as the
normalised root mean square error between the estimated HR
and true HR.

To select the best kernel, we estimated each participant
model using three different kernels. The parameter selection
method of each kernel was given in [11]. We calculated the
fit error of each estimated model. As a comparison of the
conventional method, we calculated the fit error of the model
by using the latest square (LS) method Eq. (4). The fit error
is recorded in Table II. The kernel with the lowest fitness
error was selected for the model estimation. It demonstrated
that the proposed kernel method outperforms the conven-
tional LS method. Specifically, Fig.3(Top) shows a typical
estimated HR comparison between the kernel-based method
and LS method. The figure indicates that the proposed model
response has a lower fitness error and is smoother than the
LS model response in general. Fig.3(Bottom) is the estimated
impulse response by using different methods. The LS method
impulse response is extremely noisy. This indicates that the
kernel-based method can solve the ill-posed problem.
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TABLE II: Fitness error.

Subject TC(%) SS(%) DI(%) LS(%)

Participant 1 33.86 31.68 30.79 41.91
Participant 2 21.61 30.61 21.23 25.63
Participant 3 19.05 17.59 18.81 21.85
Participant 4 26.83 27.50 29.24 30.26
Participant 5 25.56 25.53 25.46 34.61
Participant 6 50.36 66.37 37.69 53.52
Participant 7 28.75 29.07 18.41 44.62
Participant 8 48.05 48.15 47.43 82.40
Participant 9 25.85 26.60 25.84 26.83
Participant 10 54.18 56.83 53.70 84.65
Participant 11 55.61 39.07 38.00 54.51
Participant 12 22.53 23.18 22.50 30.41
Average 34.35 35.18 30.76 44.27
Standard deviation 13.11 14.07 10.85 20.24

C. MPC Heart Rate Regulation

In the heart rate (HR) regulation phase, using the kernel-
based nonparametric model presented in Section IV-B, we
designed a model predictive controller to track a predefined
reference HR. The participants were required to stand on the
treadmill for 60 seconds. The reference HR was then set to be
100 beats/minutes and to last for 6 minutes. The prediction
horizon was p = 10 and control horizon was q = 1. Penalty
matrix for prediction errors and control moves were set to
be Qy = 1 and S = 5, respectively. To maintain the exercise
safety, the maximum speed was limited to 6 km/h and the ac-
celeration was limited to ±0.5 km/h/sec. Fig.4 demonstrates
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Fig. 4: Heart rate tracking results for all 12 subjects.

that the proposed kernel-based nonparametric model and
MPC controller achieved the desired tracking performance.
All 12 participants reached the target HR within 60 seconds
after the treadmill started and without steady-state error.
These performances are comparable with those discussed in
previous literature [6]. However, it should be emphasised that
the performance acquired by the proposed method requires
easier experiments during the model estimation phase.

V. CONCLUSION

In this paper, we proposed a nonparametric model and
a kernel-based estimation approach describing the HR re-

sponse during treadmill exercise. The proposed model and
estimation method were applied to 12 participants. The
experimental results indicated that the fit error of the pro-
posed approach is lower than the least square method.
In addition, the model estimation phase needs less time
and does not contain complex exercise protocols. By using
this nonparametric model, an automatic treadmill system
was built and employed for HR tracking during treadmill
exercise. The MPC technique was implemented, which could
achieve safe exercise by constraining both exercise speed
and acceleration. Experimental results demonstrated that the
proposed HR regulation system achieved low HR tracking
error under the predefined acceleration and speed constraints.
The proposed HR response model and MPC control approach
were experimentally validated and might have important
implications for cardiovascular rehabilitation, the creation of
effective training plans for athletes and the development of
efficient weight loss plans to combat obesity.
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