
  

 

Abstract—Multitasking motor imagery (MI) of the unilateral 
upper limb is potentially more valuable in stroke rehabilitation 
than the current conventional MI in both hands. In this paper, a 
novel experimental paradigm was designed to imagine two 
motions of unilateral upper limb, which is hand gripping and 
releasing, and elbow reciprocating left and right. During this 
experiment, the electroencephalogram (EEG) signals were 
collected from 10 subjects. The time and frequency domains of 
the EEG signals were analyzed and visualized, indicating the 
presence of different Event-Related Desynchronization (ERD) 
or Event-Related Synchronization (ERS) for the two tasks. Then 
the two tasks were classified through three different EEG 
decoding methods, in which the optimized convolutional neural 
network (CNN) based on FBCNet achieved an average accuracy 
of 67.8%, obtaining a good recognition result. This work not only 
can advance the studies of MI decoding of unilateral upper limb, 
but also can provide a basis for better upper limb stroke 
rehabilitation in MI-BCI. 

I. INTRODUCTION 

Motor Imagery based Brain Computer Interface (MI-BCI) 
is one of the three important paradigms of Brain Computer 
Interface (BCI) [1]. The principle of MI-BCI is that during 
motor imagery (MI) or motor execution, the localized neural 
rhythmic activity in the contralateral motor-sensory areas of 
the cerebral cortex is significantly diminished, while in the 
ipsilateral motor-sensory areas increases, most significantly in 

-rhythm (8- -rhythm (18-25 Hz), known as 
Event-Related Desynchronization (ERD) or Event-Related 
Synchronization (ERS) [2]. With the progress of BCI research, 
the application areas of MI-BCI become more extensive, such 
as upper limb exoskeleton control [3] and stroke rehabilitation 
[4].  

In stroke rehabilitation domain, MI-BCI has unique 
advantages in activating the plastic potential of neuronal cells 
in specific regions of the brain through active imagery form of 
rehabilitation to achieve reconstruction or repair of control 
functions between limb and brain, which can promote faster 
recovery of stroke patients [4]. MI-BCI currently focuses on 
both left and right hands, mainly because the cerebral location 
of ERD/ERS is on different sides of the brain when performing 
left- and right-handed MI, which is distinguished more easily 
than that of unilateral [5]. Consequently, there are fewer 
studies on multitasking MI-BCI of the same upper limb [6]. 
However, stroke patients usually have unilateral limb paralysis, 
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and they could enhance the motor function of paralyzed limbs 
through the rehabilitation of multiple motions of the affected 
limb, so the study of unilateral limb multitasking MI-BCI has 
a better realistic value for stroke rehabilitation [7].  

Studies targeting unilateral upper limb multitasking MI-
BCI have received attention and some progress has been made. 
For example, Yong et al. [8] first proposed the MI-BCI 
classification of two motions of the unilateral upper limb, 
while Chu et al. [9] proposed the MI-BCI classification of 
three different parts of the upper limb, separately obtaining 
60.6% and 66.2% accuracy. Current studies, however, in 
addition to the insufficient number of subjects, unspecific MI 
motions have brought challenges in practical application in 
stroke rehabilitation.  

In this paper, Section II designed two novel unilateral 
upper limb MI tasks, hand gripping and releasing (hand-
grasping) and elbow reciprocating left and right (arm-reaching) 
for stroke patients to meet the rehabilitation needs. Section 
IIIA visualizes the EEG signal of MI from time and frequency 
domains to verify the presence of ERD and ERS like 
conventional left- and right-handed MI tasks. Section IIIB 
introduces three EEG recognition methods, common spatial 
pattern (CSP) [10], filter bank common spatial pattern (FBCSP) 
[11] and the optimized convolutional neural network (CNN) 
based on FBCNet [12]. Among them, the CSP method, which 
filters the original EEG signal in the spatial domain and 
extracts discriminative features, and the FBCSP method, 
which applies CSP to different sub-bands and combines 
features with different frequency domain information, both of 
them using SVM Classifier [10], are baseline methods widely 
used in MI-BCI decoding and recognized to have good results, 
and CNN-based methods can rapidly improve the recognition 
accuracy of MI-BCI, similar to EEGNet [13] and deep and 
shallow ConvNets [14], achieving higher accuracy than 
baseline methods. Section IV shows the classification results 
the methods above, and then these accuracies statistically 
analyzed to find the similarities and differences with the 
previous left- and right-handed MI tasks. 

II. MATERIALS 

A. Experimental Paradigm 
Ten healthy right-handed healthy subjects (five males and 
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None of them had experience in MI-BCI. The experimental 
procedures involving human subjects described in this paper 
were followed the Helsinki Declaration. The timeline of each 
trial of the paradigm in this experiment is shown in Fig. 1.  

Each trial lasts 7.5s, of which the first 1.5s are video and 
audio cues for the two designed motions of right hand. These 
two detailed MI tasks were developed based on the difficulty 
and efficiency of rehabilitation, after communicating with 
clinicians in several hospitals. The details of the motions are 
shown in Fig. 2, where the specific MI in Fig. 2(a) is multiple 
reciprocal gripping and releasing of the unilateral hand, and in 
Fig. 2(b) is multiple reciprocal left-right movements of the 
unilateral elbow. Then MI tasks indicated on the screen for 4s, 
with the progress bar presented to tip elapsed time and no 
unnecessary visual and auditory stimuli. Lastly, a black screen 
is shown for 2s with a voice prompt of break.  

0s 1.5s 5.5s 7.5s

Task 
Demonstration

Motor 
Imagery Rest

 
Figure 1  Timing of one trial of our experimental paradigm. 
 

(b)(a)
 

Figure 2  Two motions of our motor imagery task, including hand 
gripping and releasing (a), and elbow reciprocating left and right (b). 
 

Before the experiment started, a resting state with eyes 
open and eyes closed, each lasting 1 minute. The experiment 
consisted of 5 sessions, each consisting of 40 trials, with 20 
trials for each MI task, and a 1-minute rest between sessions. 
Thus, 200 trials of data can be collected from one subject in 
one experiment. 

B. Data Collection and Preprocessing 
The acquisition equipment for this experiment was CGX 

Quick-30 Dry EEG Headset according to the standard 10/20 
System, with specific 30 channels shown in Table 1.  

TABLE I.  ALL CHANNELS OF THE EEG HEADSET. 

Number 1 2 3 4 5 6 7 8 
Channel Fp1 Fp2 AF3 AF4 F7 F8 F3 Fz 
Number 9 10 11 12 13 14 15 16 
Channel F4 FC5 FC6 T7 T8 C3 Cz C4 
Number 17 18 19 20 21 22 23 24 
Channel CP5 CP6 P7 P8 P3 Pz P4 PO7 
Number 25 26 27 28 29 30   
Channel PO8 PO3 PO4 O1 O2 A2   

 during the 
whole experiment, and the frequency was 1000Hz. The EEG 
cap used a bandpass filter of 0.1Hz-100Hz by default settings 
of the headset. The data were downsampled to 250Hz for 
reducing computational cost during data processing. The 
preprocessing of the acquired data was done with the 
EEGLAB toolbox (v2019.1) [15] of MATLAB (R2020a) 
software. 

III. METHODS 

A.  Analysis of ERDS During MI 
During two novel upper limb MI tasks, pronounced 

ERD/RES patterns emerged, and raw EEG data will be used 
to analyze the ERD pattern in both the time and frequency 
domains. In order to make the presented results more intuitive, 
one certain subject (S04) was selected in this part, and the EEG 
signals were firstly divided into two categories according to 
different MI tasks. Secondly the average electric potential 
value and power spectrum density of all 100 trials of each 
category of the C3 electrode were calculated. Finally, the 
differences between the two sets of signals were analyzed.  

In time domain, the EEG signal was first band-pass filtered 
in mu band (8-12Hz) in preprocessing, after which the C3 
channel was selected and its time series of two MI tasks were 
obtained according to the average value calculation process. 
Fig. 3(a) shows the comparison of electric potential changes 
with time for electrode C3, where two motions showed 
different decreasing curves with time, which is consistent with 
ERD pattern in the left parietal lobe of the brain region. 

In frequency domain, the EEG signal was first band-pass 
filtered in available band (1-40Hz) in preprocessing, after 
which the same process as the average value calculation. Fig. 
3(b) shows the comparison of power spectral density (PSD) 
changes with frequency for electrode C3, where two motions 
showed ERD pattern around the mu (8-12Hz) and beta (18-
25Hz) bands for the two MI tasks. Around these two frequency 
bands, a large difference in PSD between two motions, 
indicates that the two motions activate different levels of motor 
areas of the brain. 

(a) (b)  
Figure 3  The comparison of electric potential changes with time (a) 
and power changes with frequency (b) during two motor imagery 
tasks for electrode C3 in the Subject S04. 
 

B. CSP Method and Its Pattern Analysis 
The first decoding method used is Common Spatial Pattern 

(CSP) [10], primarily based on detecting the patterns of ERDS. 
CSP is a spatially filtered feature extraction method for two 
classification tasks, aimed to extracting the spatially 
components of each class from raw EEG data. The principle is 
to use the diagonalization of the matrix to find an optimal set 
of spatial filters for projection, obtaining a feature vector 
discriminating 2 classes of EEG signals by maximizing the 
variance. The specific principle and implementation of CSP is 
described in [10]. 

To confirm whether the features extracted using CSP 
method for new MI tasks can be effectively classified, the 
feature vectors of the patterns of CSP spatial filter generated 
for each subject are visualized in the form of a brain 
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topography map to visualize the differences between features. 
Fig. 4 shows the first and last CSP patterns for 10 subjects. It 
can be seen a significant difference between CSP0 and CSP1 
for each subject, which proves that the features extracted by 
each subject under CSP method are well discriminated. 

S01 S02 S03

S04 S05

S09

S06

S10

S07 S08

 
Figure 4  The topographic patterns of first two components of CSP 
of total 10 subjects in the experiment. 
 

C. FBCSP Method and Its Pattern Analysis  
Filter Bank Common Spatial Pattern (FBCSP) [11] method 

is based on CSP method with improvements in frequency 
filtering and feature selection. A filter bank is used to divide 
EEG signal in multiple sub bands to extract different features, 
which is set as 4-40Hz, with every 4Hz divided into one sub-
band, such as 9 bands of 4-8Hz, 8-12Hz, ..., 36-40Hz. The 
specific principle and implementation process FBCSP is 
described in [11]. 

Similar to the pattern analysis of the CSP, the feature 
vectors of the 9 sub bands of the FBCSP, are presented in the 
brain topography. Fig. 5 shows FBCSP patterns of 4-40Hz in 
one certain subject (S09), where it can be found that the 
features of each sub-band are different, and the contrast around 
beta band, such as 20-24Hz, are more obvious, proving that the 
method is also effective in extracting MI features for different 
motions of unilateral upper limb. More importantly, this 
discrimination provides a basis for band selection of FBCSP 
and even other methods. 

4-8Hz 8-12Hz 12-16Hz

16-20Hz 20-24Hz 24-28Hz

28-32Hz 32-36Hz 36-40Hz  
Figure 5  The topographic patterns of first two components of 
FBCSP of total 9 sub-bands of the Subject S09 in the experiment. 
 

D. Optimized CNN based on FBCNet 
FBCNet [12] is a novel deep learning algorithm that 

combines neurophysiological priors and Convolutional Neural 
Network (CNN) for MI-BCI classification by extracting 
spectro-spatial discriminative features in few learning 

parameters, while avoiding overfitting problem in case of 
small datasets. In this paper, a network is constructed on the 
basis of FBCNet, whose structure is shown in Fig. 6. Same as 
FBCSP, the EEG signal is band-pass filtered through a filter 
bank. It contains a spatial CNN layer to learn discriminative 
spatial patterns, a unique variance layer that computes the 
variance of the signal power in time domain, and a fully 
connected layer for classifying MI tasks with the features 
extracted from the variance layer.  
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Figure 6  Architecture of optimized CNN based on FBCNet. 
 

The spatial convolutional layer consists of Nb=k (In this 
paper k=9) parallel Spatial Convolution Blocks (SCB), each 
SCB module including 3 parts, a spatial convolutional module 
with a 2-dimensional convolution layer (Conv2d) of m spatial 
filters of size (C, 1) with C channels, a batch-normalization 
layer (BatchNorm2d), and an Exponential Linear Unit (ELU) 
activation function. The k SCB correspond to the number of 
sub bands filtered results as input, and the dimension of the 
output of SCB is m×T×k, with T sampling points. The output 
will be passed to the variance layer, and the variance on time 
domain of each time series is calculated using (1) in forward 
pass. 
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In this paper, the network structure is optimized based on 
FBCNet. The number of m is set as 4 to simplify the network 
structure and reduce the training time. In addition, the related 
early stop and training reset strategies are also established, as 
shown in Fig. 7. 

(a) (b)  
Figure 7  The accuracy (a) and loss (b) with training epochs of 
CNN, taking one of 10 folds of the Subject S07 as an example. 
 

Fig. 7 shows the training process of the network in detail, 
taking the training and validation accuracy (Fig. 7(a)) and loss 
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(Fig. 7(b)) of one certain subject’s (S07’s) 10-fold cross 
validation in one fold as an example. Before the training reset, 
the accuracy of the training and validation sets soar to almost 
1, while their losses continue to fall throughout the period. 
Furthermore, the accuracy and loss repeat the above process 
after reset, while the loss decreases more rapidly. Eventually, 
the loss of the validation set reaches a much lower value than 
before, demonstrating the effectiveness of the strategy. 

IV. RESULTS 

For the EEG data from 10 subjects, multiple algorithms 
were used to compare the accuracy of individual models 
between each subject. To fully simulate the flow of a real-time 
MI-BCI rehabilitation system for stroke patients (Training, 
model generating and testing), the performance comparison 
took the same data division approach, whereby each subject 
was divided into two equal parts chronologically, and the first 
half used 10-fold cross-validation to screen the optimal model, 
and the second half was tested to obtain the accuracy. Table 2 
shows the comparison of the average accuracies using 3 
methods in Section III, and Fig. 8 shows the accuracy of each 
subject in 3 methods sorted by the results of CSP algorithm. 

TABLE II.  COMPARISON OF AVERAGE CLASSIFICATION ACCURACY. 

Method Accuracy (%) 
CSP+SVM 62.8 ± 12.12 
FBCSP+SVM 64.0 ± 12.58 
CNN based on FBCNet 67.8 ± 14.19 

As can be seen in Fig. 8, firstly, for the four subjects on the 
lower end of the distribution (<60% accuracy) in CSP 
algorithm, both FBCSP and CNN achieved much higher 
results, with deep learning framework bringing great 
advantages. Secondly, for the subjects on the middle of the 
distribution (60-80% accuracy), the accuracy of FBCSP was 
comparable to that of CSP, while the accuracy of CNN would 
rise to a high level. Finally, for two subjects on the higher end 
of the distribution (>80% accuracy), the performance of 
FBCSP and CNN will be lower than that of CSP, but still 
remain at a good level.  

 
Figure 8  Average accuracy in the binary classification of two MI 
tasks using 10-fold cross-validation. (Sorted by CSP-SVM acc.). 
 

It suggests that the result of distribution is consistent with 
conventional MI classification, such as BCI competition IV 
dataset 2a [11] and Korea University dataset [16], which can 
be illustrated that the two novel upper limb MI tasks are 
statistically distinguishable in terms of their distribution, and 
can be followed up the studies of post-stroke rehabilitation for 
upper limbs in MI-BCI. 

V. CONCLUSION 
In this paper, a novel MI-BCI experimental paradigm to 

acquire EEG data of 2-class unilateral upper limb of 10 
normal people was designed. Three algorithms were applied, 
the highest of which achieved 67.8% classification results. It 
points out that MI tasks of unilateral upper limb could be 
accurately classified, and this work is informative for stroke 
rehabilitation in MI-BCI. 
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